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Abstract :
Inspired by the groundbreaking work of Ruslan Tepelyan and Achintya Gopal in their paper titled “Generative Machine Learning for
Multivariate Equity Returns”, our project aims to leverage generative modeling techniques to predict future equity returns. Specifically,
our goal was to focus on using normalizing flows in conjunction with factor models to enhance our predictive capabilities.
The motivation behind this project lies in the inherent unpredictability of stock prices and market factors. Generative modeling provides
a powerful tool for financial analysis by transforming complex data distributions into realistic samples. Building upon the theoretical
foundations covered in our coursework and recent advancements in generative modeling, we employ normalizing flows to learn the
underlying probability distribution of financial data.
Our approach involves combining insights from financial data analysis with normalizing flow techniques. We integrate factor models,
such as the well-known Fama-French Three-Factor Model, to predict outcomes for a carefully selected blue-chip stock. By training our
model using historical data, we created a robust framework for predicting future returns in the equity market.
The Fama-French Three-Factor Model, developed by Eugene Fama and Kenneth French, extends the traditional Capital Asset Pricing
Model (CAPM) by incorporating additional factors, market risk, size, and value. These factors capture important dimensions of stock
returns beyond the market portfolio. Our project leverages these factors, with our own selection of important factors, to enhance the
accuracy of our predictions.
Furthermore, we explored the use of the normalizing flow technique to model a complex financial dataset. This model did not allow us
to capture the complexities in the data and generate realistic samples. In our endeavor to implement a factor model, we encountered a
significant setback when attempting to scale up the complexity by introducing additional factors. The normalizing flowsmodel was unable
to accommodate this level of intricacy. Recognizing the limitations of this approach, we turned towards using a deep neural network,
which proved resilient in handling the increased dimensionality and complexity inherent in the expanded factor model.
In our study, we constructed a neural network model focused on a 3-factor framework incorporating treasury yield, Gross Domestic
Product (GDP) rates, and inflation rates as predictors. With two hidden layers, the network effectively learned the complex relationships
between these factors and equity returns. By training on historical data, the model was able to make accurate predictions of equity returns.
This approach showcases the power of neural networks in extractingmeaningful insights frommulti-factorial datasets, ultimately enabling
more informed decision-making in the realm of financial forecasting.
In summary, our project contributes to the field of generative finance by combining Generative modeling techniques, such as normalizing
flows and neural networks, and established factor models to predict equity returns.

Index Terms: Generative modeling, Normalizing flows, Neural Networks, Factor models, Equity returns, Blue-chip stocks.

1 Introduction

The unpredictability of stock prices creates uncertainty for in-
vestors and analysts. In recent years there has been an interest
in applying generative modeling techniques to address this un-
predictability. Inspired by the work of Tepelyan and Gopal, our
project seeks to explore the potential of generative machine learn-
ing in predicting equity returns.
There are multiple motivations for this project. With our aim be-
ing to establish an understanding of how to use predictive model-
ing to forecast the outcome for stocks. Thismotivation is driven by
the inherently unpredictable nature of stocks and their character-
istics. This is due to the many factors impacting their movements
and the associated risks they pose. Particularly, stocks carry busi-
ness specific risk, or risks which are specifically related to their
business model and internal functions. Additionally, equities are
also correlated with external factors, such as global politics and
the overall economic of the areas in which they operate. However,
because stocks are known to have an unlimited return but limited
liability (you can only lose the price of the stock, nothing more),
they are at the center of much of the study of finance.

An interesting solution to this complex problem is Generative
modeling. By transforming complex data distributions into sim-
pler, more realistic data, more financial analysis can be done. This
is particularly useful for equity returns, since traditional analy-
sis methods can fall short capturing the underlying distributions
and patterns. Our project recognizes the significance of genera-
tive modeling as predictive method for stocks, offering a way to
model and forecast outcomes that would otherwise be extremely
challenging to predict through traditional methods.

Within the academic literature, wewill use thework of researchers
who have explored various methods, including factor models that
incorporate combined probability, Gaussian methods, normaliz-
ing flows, and neural networks to predict future outcomes in the
financial markets. Factor models have emerged as pivotal tools
for comprehending and forecasting stock returns. These models,
rooted in statistical analysis and theory, aim to find and help an-
alyze the underlying factors of market dynamics by finding key
factors that influence asset prices. At the heart of factor models
lies their ability to find the sources of variation in returns. Factors
such as size, value, and market risks have been widely acknowl-



edged as fundamental determinants of stock returns.
Additionally, integrating normalizing flows and deep neural net-
works techniques into factor models represents a significant ad-
vancement in predictive modeling for financial markets. Normal-
izing flows in combination with deep neural networks has the
ability to model complex probability distributions and generate
realistic samples that can capture the dynamics of stock returns.
The scalability of these techniques allows for the analysis of large-
scale financial datasets, and therefore facilitates the development
of predictive models that can accommodate the growing volume
and complexity of financial data.
In conclusion, our project seeks to harness generative machine
learning techniques to address the unpredictability of stock prices,
inspired by the research of Tepelyan and Gopal. Through the in-
tegration of factor models, probability, Gaussian methods, neural
networks, and normalizing flows, we aim to develop a predictive
framework for forecasting equity returns. By leveraging the flexi-
bility and scalability of these methods, our project aims to enhance
our understanding of predictive modeling in finance and provide
insights for investors and analysts.

2 Background
With this project, we aim to predict future returns of The Coca-
Cola Company (KO or the Company). The Coca-Cola Compayy is
considered to be a "Blue Chip Stock". Blue Chip Stocks are stocks
issued by large, well-established corporations which have shown
to have dependable earnings. These corporations regularly pay
dividends to investors and have been doing so for many years.
In addition to that, because these companies have a long history,
they would be less prone to business risk based on their maturity,
and more correlated to the data selected for the factor model. The
Coca-Cola Company is a component of market indexes or aver-
ages, such as the Dow Jones Industrial Average, the Standard &
Poor’s (S& P) 500, and the Nasdaq-100 in the United States (Chen,
2024.)

There are essentially two ways to predict stock price - Funda-
mental Analysis and Technical Analysis. In this project, we have
utilised Technical analysis methods along with normalising flows
in order to predict returns. We then used the factor model and
a deep neural network to produce a better fit model. Daily stock
price makes an essential component of the robust dataset needed
for this analysis. After collecting the daily prices, daily, monthly
and annualised returns need to be calculated.

𝑅daily =
𝑃today−𝑃yesterday

𝑃yesterday

𝑃today is the closing price of the stock today and 𝑃yesterday is the
closing price of the stock yesterday.

𝑅monthly =
𝑃end of month−𝑃start of month

𝑃start of month

𝑃end of the month is the closing price of the stock at the end of the
month and 𝑃start of the month is the closing price of the stock at the
start of the month.

𝑅annualized =

(
1 + 𝑅period

)𝑛
− 1

𝑅period is the return of the period and n is number of periods per
year (for daily returns n would be the number of trading days in
the year i.e, 252 and for monthly returns n would be 12.

Three primary components are employed by the FAMA-French
factor model to explain stock market results. 1) Market risk; 2)
Small-cap firms’ higher earnings over large-cap companies; and 3)
High book-to-market value companies’ better performance over
low book-to-market value companies. It depends on the observa-
tion that small-cap and high-value companies consistently outper-
form the market as a whole.

The expected rate of return on a stock or portfolio is given by the
following equation:

𝑟 = 𝑟 𝑓 + 𝛽1 (𝑟𝑚 − 𝑟 𝑓 ) + 𝛽2 (SMB) + 𝛽3 (HML) + 𝜖

Where:
• 𝑟 = Expected rate of return
• 𝑟 𝑓 = Risk-free rate
• 𝛽 = Factor’s coefficient (sensitivity)
• (𝑟𝑚 − 𝑟 𝑓 ) = Market risk premium
• SMB (Small Minus Big) = Historic excess returns of small-cap
companies over large-cap companies

• HML (High Minus Low) = Historic excess returns of value
stocks (high book-to-price ratio) over growth stocks (low
book-to-price ratio)

Factor models are common for stock prediction and can be
changed to best fit to company. In the case of KO, as the business is
moremature and has a largemarket capitalization, we selected our
factors to be GDP, inflation rates, and the 10 year treasury yield.
Larger companies typically do not see as sudden growth in earn-
ings, so we chose to focus on publicly available data that ground
the return expected from a market as a shareholder. Shareholders,
the people who have a share of ownership in the companies stock,
have a baseline expected rate of return. The intricacies of this are
discussed further in section 4.1.

3 Methods
3.1 Normalizing Flows Technique
A common Generative model technique for complex distributions
is normalizing flows. Normalizing flowsmaps between two latent-
variable models, X and Z. This mapping is given by 𝑓𝜃 : R𝑑 → R𝑑 ,
where d is the dimension. This mapping results in 𝑋 = 𝑓𝜃 (𝑍 ) and
𝑍 = 𝑓 −1

𝜃
(𝑋 ), which are both differentiable and invertible (Kat-

soulakis, 2024, Intro to Normalizing Flows). The steps to analyzing
a distribution using normalizing flows are the following:
1. Defining the base distribution for 𝑧0 = 𝑥 .
2. Defining and applying a series of transformations to get to

𝑥 = 𝑧𝐾 , where K is the total number of transformations ap-
plied.

3. Compute the likelihood by change of variables.
4. Optimize using maximum likelihood over the dataset.
5. Once the model is trained using previous steps it can be used

for efficient sampling and density estimations.

3.1.1 Defining the base distribution. We begin by defining
our base distribution, denoted as 𝑝 (𝑧0). In most cases, we choose a
simple distribution, such as a multivariate Gaussian. The variable
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𝑧0 represents the latent space, and we want to transform it into
the data space (x). The initial mapping is straightforward: 𝑧0 = 𝑥 ,
which means we assume that the latent representation is directly
equal to the observed data.

3.1.2 Defining and applying a series of transformations.
The next step involves applying a series of invertible transforma-
tions, also known as bijective functions, to modify the base distri-
bution, enhancing its expressiveness. We initiate these transfor-
mations with the initial base distribution 𝑧0 and continuing for all
K steps:

𝑧1 = 𝑓1 (𝑧0), 𝑧2 = 𝑓2 (𝑧1),..., 𝑧𝐾 = 𝑓𝐾 (𝑧𝐾−1)

Each function 𝑓𝑖 is chosen to be invertible, ensuring that the data’s
likelihood under the transformed distribution can be accurately
computed (Katsoulakis, 2024, Intro to Normalizing Flows). No-
tably, if the data is discrete, each transformation is discrete as
well. For continuous data, unlike discrete transformations used
with discrete data, continuous normalizing flows employ continu-
ous transformations that act on the entire distribution rather than
individual data points. This distinction is crucial in capturing the
complex dependencies present in continuous data. The image be-
low illustrates how the function evolves as it learns the data and
undergoes a series of transformations.

Figure 1. Illustration of a normalizing flow model, transforming a simple
distribution to a complex one step by step. Adapted from Lil Log article by
Lilian Weng, "Flow-based Deep Generative Models" Lilian Weng.

3.1.3 Compute the likelihood by change of variables. After
we transform a simple distribution (usually a standard Gaussian)
into a more complex distribution by applying a series of invertible
transformations, we compute the likelihood. Given a data point x,
we want to compute its likelihood under the target distribution.
This is used to evaluate how effective the model is. We start with
the likelihood of the transformed variable z and then apply the
change of variables formula. Let 𝑧 = 𝑓 (𝑥) be the transformed
variable, where f is the invertible transformation. The likelihood
of (z) is given by the base distribution:

𝑝 (𝑧) = N(𝑧; 0, 𝐼 )

Here, N represents the Gaussian distribution with mean 0 and
identity covariance matrix.
To compute the likelihood of the original data point 𝑥 , we use the
change of variables formula:

𝑝 (𝑥) = 𝑝 (𝑧)
���det ( 𝜕𝑓𝜕𝑥 )���−1

The term

���det ( 𝜕𝑓𝜕𝑥 )���,
represents the determinant of the Jacobian matrix of the transfor-
mation f with respect to x (Katsoulakis, 2024, Intro to Normalizing
Flows). Taking the determinant gives us a single value that repre-
sents the overall change in volume induced by the transformation.
The determinant should be close to 1. If it is much greater than
1 then areas are being stretched out, resulting in larger volumes
in the transformed space compared to the original (Papamakar-
ios et al., 2021, March). On the other hand, if the determinant is
less than 1, it implies areas are being compressed and the volume
is much less than the original (Papamakarios et al., 2021, March).
The change of volume affects the probability density as well. If the
determinantwere the only factor, the probability densitymight be-
come distorted by over condensing or spreading out leading to in-
valid probabilities. Thus, we now take the inverse as a corrective
measure. The inverse counteracts the stretching or condensing
and ensures that the integral of the transformed density over the
entire space remains equal to 1, thereby maintaining the integrity
of the probability density (Papamakarios et al., 2021, March). This
step essentially neutralizes the network.

3.1.4 Optimizing using maximum likelihood over the
dataset To find the best parameters for a model based on the
observed data, we optimize the likelihood using Maximum Like-
lihood Estimation (MLE) and Log-Likelihood. Given a dataset:
D = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where each 𝑥𝑖 represents an observed data
point, we want to find the model parameters 𝜃 that maximize the
likelihood of the data.
The likelihood function 𝐿(𝜃 ) measures how well the model ex-
plains the observed data. It is defined as the joint probability of
the data points given the parameters:

𝐿(𝜃 ) = 𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑛 |𝜃 ),

The goal is to find 𝜃 that maximizes 𝐿(𝜃 ). We do this by log-
likelihood to simplify computations. The log-likelihood function
is:

log𝐿(𝜃 ) = ∑𝑛
𝑖=1 log𝑝 (𝑥𝑖 |𝜃 )

Maximizing this log-likelihood function is equivalent to maximiz-
ing the likelihood function. In this optimization process, we may
encounter complex transformations and computations, such as the
expression:

max
𝜃

log(𝑝𝜃 (𝐷)) =
∑︁
𝑥∈𝐷

log 𝑝𝑍 (𝑓 −1𝜃
(𝑥)) + log

����� 𝜕𝑓 −1𝜃
(𝑥)

𝜕𝑥

�����
This expression encapsulates the optimization of the log-
likelihood function over the dataset 𝐷 , where 𝑝𝜃 (𝐷) represents
the likelihood of the dataset under the model parameterized by
𝜃 , 𝑓 −1

𝜃
denotes the inverse transformation function, and 𝑝𝑍 is the

probability density of the base distribution (Katsoulakis, 2024, In-
tro to Normalizing Flows). The determinant of the Jacobian matrix
| 𝜕𝑓

−1
𝜃

(𝑥 )
𝜕𝑥 |, as dicussed earlier, accounts for the stretching or com-

pression of volume in the transformation.
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3.1.5 Using the model to sample and estimate. With the es-
timated parameters now in hand, we can perform inference tasks
such as hypothesis testing, assess the effectiveness of your model
to the data, or utilize the trained model to make predictions on
new, unseen data.

3.2 Neural Networks

3.2.1 Defining Neurons A neural network is a highly
parametrized model, inspired by the architecture of the human
brain; learns from “experience” (Katsoulakis, 2024).
A "neuron" is a computational unit that takes as input 𝑥1, 𝑥2, 𝑥3
(and a +1 intercept term), and outputs ℎ𝑤,𝑏 (𝑥) = 𝑓 (𝑊𝑇 𝑥) =

𝑓

(∑3
𝑖=1𝑊𝑖𝑥𝑖 + 𝑏

)
, where 𝑓 : R → R is called the activation func-

tion.
𝑓 (𝑧) = 1

1 + exp(−𝑧)

3.2.2 What is a neural network? Neural networks are compu-
tational frameworks designed to emulate the intricate operations
of the human brain. These networks comprise interconnected
units or neurons that process information and learn from data. Un-
like systems with pre-programmed rules, neural networks develop
their understanding by identifying features from data.

Figure 2. The simplest possible neural network, one which comprises of
a single “neuron.” Stanford University.

The components of a neural network include neurons, connec-
tions, weights, biases, propagation functions, and a learning rule.
Neurons process inputs based on thresholds and activation func-
tions, while connections use weights and biases to regulate the
flow of information. The learning process involves three stages:
computing the input, generating the output, and iteratively refin-
ing the process to improve the network’s ability to perform various
tasks.
The fundamental operations in neural networks are known as for-
ward propagation and backpropagation:

• Forward Propagation:

1. Input Layer: Nodes in the input layer represent each feature
and receive the corresponding data.

2. Weights and Connections: Weights signify the strength of
connections, which are adjusted during training.

3. Hidden Layers: Neurons in the hidden layers process
inputs by multiplying them by weights, summing them,

and then applying an activation function to introduce non-
linearity. This allows the network to identify complex pat-
terns.

4. Output: The process is repeated through the layers until the
output layer produces the final result.

• Backward Propagation:

1. Loss Calculation: The output of the network is compared
with actual target values using a loss function, such as Mean
Squared Error (MSE) for regression tasks. The MSE is com-
puted as

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

2. Gradient Descent: The network employs gradient descent
to minimize the loss, adjusting weights based on the gradient
of the loss with respect to each weight.

3. Adjusting Weights: This process of backpropagation in-
volves adjusting weights across the network in a reverse di-
rection iteratively.

4. Training: The entire cycle of forward propagation, loss cal-
culation, and backpropagation is repeated with different data
samples, allowing the network to learn and adapt to patterns
in the data.

5. Activation Functions: Functions like the rectified linear
unit (ReLU) or sigmoid determine whether a neuron should
activate, contributing to the model’s ability to handle non-
linear data.

3.2.3 Artificial Neural Networks Architecture The network
architecture consists of three primary layers: the input layer, one
or more hidden layers, and the output layer.

Figure 3. Illustration of an Artificial Neural Network. Adbolrasol;
et al 2020.

The hidden layer or layers filters and extracts key patterns from
the inputs, forwarding only themost pertinent information to sub-
sequent layers for further processing. This selective extraction en-
hances the network’s efficiency by focusing on essential data and
omitting redundant inputs.
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Activation functionsmake the back-propagation possible since the
gradients are supplied along with the error to update the weights
and biases. (Ghorakavi, 2024)
The activation function plays a crucial role for a couple of reasons:
Firstly, it introduces non-linearity to the model, which is essential
for capturing complex relationships between inputs. Secondly, it
transforms the input into a format that is more suitable for further
analysis and output generation, essentially shaping the data into
a more actionable form.

• Types of Activation functions

1. Binary Step function: Depends on a threshold value that
decides whether a neuron should be activated or not. The
binary step function is defined as:

𝑓 (𝑥) =
{
0 for 𝑥 < 0
1 for 𝑥 ≥ 0

The obvious drawback is that it cannot represent multi-value
outputs.

2. Linear Activation function: It is called "no activation," or
"identity function" the activation is proportional to the input.
The identity function is defined as:

𝑓 (𝑥) = 𝑥

The last layer of the function will be a linear function of the
first layer. Therefore, the derivative of the function is a con-
stant.

3. Non-linear Activation function:They allow backpropaga-
tion because now the derivative function would be related to
the input

Popular Non-linear Activation functions:
• Sigmoid Function: The function outputs values between 0
and 1, useful for binary classification problems. It is defined
by the formula:

𝜎 (𝑥) = 1
1 + 𝑒−𝑥

However, it is not often used in deep networks due to prob-
lems like vanishing gradients.

• Hyperbolic Tangent Function (tanh) Outputs values be-
tween -1 and 1. It is similar to the sigmoid but can provide
stronger gradients since it centers the output, which helps
accelerate the convergence. The formula is:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

• Rectified Linear Unit (ReLU) It has become the default ac-
tivation function for many types of neural networks because
it allows models to converge faster and perform better. ReLU
is defined as:

ReLU(𝑥) = max(0, 𝑥)
It does not activate all the neurons at the same time, which
means the network can easily benefit from sparsity.

• Leaky ReLU: It is a variant of ReLU that allows a small, pos-
itive gradient when the unit is not active. The formula is:

Leaky ReLU(𝑥) = max(0.01𝑥, 𝑥)

• Maxout This activation is a generalization of ReLU and
Leaky ReLU. It takes the maximum of a set of linear func-
tions, which makes it more flexible and capable of learning
non-linear decision boundaries. The Maxout function is rep-
resented as:

Maxout(𝑥) = max(𝑤𝑇1 𝑥 + 𝑏1,𝑤𝑇2 𝑥 + 𝑏2)

where𝑤1,𝑤2 are weights and 𝑏1, 𝑏2 are biases.
• Exponential Linear Unit (ELU) It combines the benefits
of ReLU and the ability to maintain mean activations closer
to zero, which speeds up learning. The negative inputs are
mapped to a function which ensures a smoother output than
ReLU. It is defined as:

ELU(𝑥) =
{
𝑥 if 𝑥 ≥ 0
𝛼 (𝑒𝑥 − 1) if 𝑥 < 0

Figure 4. Activation functions Singh ; 2024.

3.2.4 Deep Neural Networks Machine learning as a field is dedi-
cated to automating the application of statistical models, through
algorithms to enhance prediction accuracy. In ML, a model learns
by adjusting its internal weights to minimize errors in its predic-
tions, thus becoming more accurate over time.
The most basic form of neural network is the single layer percep-
tron model. This model has a single dense layer. A neural network
with 2 or more layers qualifies as a "deep neural network".
A key component of building a successful model is figuring opti-
mal weights that minimize prediction error. The backpropogation
method takes care of that. The optimization approach uses the
“gradient descent” technique to quantify prediction errors.
Deep neural networks take this concept further by layering multi-
ple hidden layers on top of each other. This architecture builds on
the premise that if a single hidden layer can effectively discern in-
put significance and relationships for better predictions, multiple
layers could significantly amplify these benefits, leading to more
refined and accurate models.

4 Results
Our final code aims to use both a factor model and a neural net-
work to predict equity returns of Coca Cola (KO).
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4.1 Selecting the Data

We began by selecting a period of time to evaluate KO.We selected
the stock performance from January 1, 1995 to December 31, 2004
(Yahoo Finance). This was an interesting period in time in that it
includes the collapse of the technology bubble and the economic
effects of the 9/11 terrorist attack. Following 9/11, there were im-
mediate impacts on the economy, such as the immediate impact
of the 9/11 attack was to reduce real GDP growth in 2001 by 0.5
percent and an increase to the unemployment rate by 0.11 percent
(Roberts, 2009). Additionally, for better results with our data, we
chose this time frame in order to have a holistic idea of the econ-
omy, with the future completely priced in. Meaning, during this
time we have all necessary information to understand the perfor-
mance in this period of time, as well as access to all economic data
needed to support the model.
For the factors, we selected GDP rate, inflation, treasury yield. For
the GDP rate, we used the annual real GDP, as this data is released
in the US on an annualized basis. Real GDP is most frequently ref-
erenced to categorize economic health, as this is adjusted for infla-
tion and determines the rate in which the US economy is growing
each year (Hall). For inflation, we used the the Consumer Pric-
ing Index (CPI). As described by the US Bureau of Labor Statistics,
CPI "is a measure of the average change overtime in the prices
paid by urban consumers for a market basket of consumer goods
and services." Finally, for treasury yield we referred to the 10-year
treasury yield. Often referred to as the risk free rate, this rate is
an essentially market for knowing what shareholders expect for
value generation of a company. Investing in the US treasury is
viewed as "risk-less" granted it is unlikely for the government to
collapse as they have the capability of taxing to fund debts. So, an
investor in a stock would expect a return that of treasury, which
for stocks as they have no maturity rates, is often compared to the
10-year treasury yield.

4.2 Attempting a Normalizing Flow Model

First, to begin our process we tried to create a model for KO that
predicted its stock performance given only the price data. In this
process, we came to realize that the normalizing flowmethod, was
both difficult to integrate different factors into, and unlikely to be
able to support type of model we needed without also incorporat-
ing additional modeling architecture.
As seen in Figure 5., there was instability of the normalizing flow
model, even after adjusting dimensions and catering the model
to the data. Due to both the complexity of the data and also the
NF model in general, it was difficult to fit the data, whether over
or under-fitting the KO stock performance. Also, for modeling a
stock like KO, throughout volatile economic times, this produces
natural outliers in the data. Here, the noise appears to also degrade
the model’s. For these reasons, we decided to seek alternatives to
the project methods.

4.3 Creating a Deep Neural Network Model

Following our lack of success with the normalizing flow model,
we decided to use the factor model with a deep neural network.
Due to a large access to data for performance, a DNN is a reason-
able and useful model for predicting stock performance. In this
instance when we also wanted in intertwine other factors into our
model, three factors, the DNN was a good architecture to apply.

Figure 5. Outputs of the NF Model, with Time referencing days of stock
performance metrics.

Particularly in this case, where there is a non-linear relationship
between economic factors and stock performance; DNN can find
these dependencies between variables to arrive at a stock predic-
tion.

4.4 Merging the Time Frames

All three of these files were open and read in the code. Then to be
able to merge the data based on dates, we first had to spilt up the
dates, which was completed using string splits. The metrics used
came in at different times frames, as KO and Treasury Yield were
performed daily, subject to market closes. Likewise, GDP is annual
and CPI is released monthly. Then using pandas’ merge() function
wewere successfully able tomerge the data based on the ’Year’ and
’Mo nth’ columns. For example, the function pd.merge(gdp_data,
inflation_data, on=’Year’, how=’left’) merges the GDP data and in-
flation data based on the ’Year’ column, retaining all rows from the
left data-frame (GDP data) and matching rows from the right data-
frame (inflation data). This process is then repeated for merging
yield data and stock data. Now with the merged data we were able
to drop any missing values using the dropna() function. It is also
important to note that the target variable is selected, which in this
case is the ’Close’ price of KO stock shifted by one day to predict
the next available day’s price. This is done by the function target
= factor_data[’Close’].shift(-1).

4.5 Splitting the Data

Now that the data is cleaned and organized it is split into train-
ing and testing sets, with 80% of the data used for training
and 20% for testing. This is done by "X_train, X_test, y_train,
y_test = train_test_split(factor_data, target, test_size=0.2, ran-
dom_state=42)", where

• X_train and y_train are used to train the the neural network.
• X_test and y_test are used to evaluate the performance of the
trained model on unseen data.
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4.6 Standardizing the Input Data

Now using standardization, or z-score normalization, we re-scaled
the features of a dataset, namely X_train and X_test to have prop-
erties similar to a standard normal distribution. The first step in
standardization is to calculate the mean value of each value across
the entire dataset. For each value, the mean value is subtracted
from all data points, resulting in a dataset where the mean of each
value is centered around zero. After centering the mean, we scale
to have a standard deviation of 1. This is achieved by dividing each
value by its standard deviation, which is a measure of the spread
or variability. Scaling the values in this way ensures that they
have similar ranges andmagnitudes, preventing values with larger
scales from dominating the models learning process. By standard-
izing the data, all values will have a mean of approximately 0 and
a standard deviation of 1. This will not change the shape of the
data but rather just rescale it. In our code we use the function
StandardScaler() to rescale our dataset.

4.7 Building the Factor Model

This is where a neural network is added by using the function
"Model=Sequential()". Sequential from Keras is a linear stack of
layers, where each layer has exactly one input tensor and one out-
put tensor. Each neuron in one layer is connected to the ones in
the previous creating a connected network. In this model there
are two hidden layers followed by a Leaky ReLU activation layer.
The final output layer uses a ReLU activation function to predict
the next day’s stock price.

4.8 Training the Factor Model

Before the model is trained the optimizer "Adam" is used to
update the model’s weights during training to minimize the
loss function. This optimization is done with the function
"Model.compile(optimizer=’adam’, loss=’mse’)". The second half
of this function is naming the loss function as MSE or Mean
Squared Error. The mean squared error loss function minimizes
the squared differences between predicted and actual values. MSE
is calculated as the average of the squared differences between pre-
dicted and actual values over all samples in the dataset.
Now that these steps are complete the model is ready to be trained.
The is done on the line "Model.fit(X_train_scaled, y_train,
epochs=50, batch_size=32, validation_data=(X_test_scaled,
y_test))". During the training, the model is updating its weights
iteratively to minimize the loss function. The model is trained for
50 epochs, meaning it will iterate over the entire training data 50
times. Additionally, a batch size of 32 is used, meaning the model
updates its weights after processing 32 samples. The validation
data (X_test_scaled and y_test) are provided during the iterations
to evaluate the model’s performance on unseen data after each
epoch.

4.9 Predicting Using the Model

After training the neural network model on the training data, the
next step is to use the trained model to make predictions on the
test dataset. We use the predict() method to predict the next days
stock based on the trained data. Then the predicted and actual
values are combined into a DataFrame to directly compare. This
comparison is allows us to assess the performance and accuracy
of the model. The final step of the code saves the data to a CSV file

to allow for further analysis of the data. The results, as shown in
Figure 6., were much better at capturing the data. This supports
our initial realization that a deep neural network would be better
for developing a model with data complexities.

Figure 6. Outputs of the DNN Model

5 Discussion
Throughout creating a predictivemodel for stock performance, we
noticed that there was nuance in integrating the economic data
and other metrics given different time lines and merging. In ad-
dition to that, our factors, at only three, only represent a small
amount of data available and metrics commonly used to support
rationale on why a particular stock is performing in a certain fash-
ion. With more time and data accessibility, we do see potential in
further refining and augmenting our findings for a better fit model
using a deep neural network model. There is always room to im-
prove, especially as our model seemingly over-fits our data. We
have continued to streamline the model and moreover taken our
previous work to begin crafting a generative aspect to our stock.
Additionally, we note that ourmodel does not necessarily generate
new data, but predicts stock prices. This model was difficult for us
to produce, and throughout our project we did attempt to create a
generative model, not predictive. We began working on a future
factor input set, in which after the timeline provided we input the
factor data that we had, and in turn get the results of the stock
prices. This proved to be difficult for us to do, but is something we
are interested in continuing to explore in the future.
Finally, we recognize that our data selection was in a US-centric
lenses. There is globality in general to the interconnections of
the stock market, and in turn how that impacts a company’s per-
formance. We would be interested in supporting our model with
global metrics and data, particularly when the performance of in
this case our focus, KO, are also dependent on international mar-
kets. KO is a global company, with sales in over 200 countries of
Coca-Cola soda alone (The Coca-Cola Company).

6 Conclusion
In conclusion, the modelling architecture of a deep neural network
best support teaching and training a predictivemodel for the Coca-
Cola equity prices. Through further optimization and addingmore
external factors, this model could be used as a baseline for pre-
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dicting stock performance and generating new data. Stock per-
formance and accompanying data is vast and ever-evolving in the
field of finance.
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