

IEORE4407: Game Theory Models of Operation

Lecture Notes
Arya Gadage
Columbia University
Instructor: Prof. Jay Sethuraman

November 4, 2025

Static Games with Complete Information

10 September 2025

- n players.
- Player i has action set A_i .
- Payoff: $u_i : A_1 \times A_2 \times \dots \times A_n \rightarrow \mathbb{R}$
- $u_i(a_1, a_2, \dots, a_i, \dots, a_n)$ is the payoff to player i for choosing a_i .
- Actions are common knowledge.
- One-shot game.
- Each player picks an action "simultaneously" (without knowing others' choices).

	L	R
U	9, 9	0, 10
D	10, 0	4, 1

- Row player can choose U or D .
- Column player can choose L or R .

Dominant Strategies

The "best" choice never depends on what the other person does.

- Row player should pick D anyways.
- Column player should pick R anyways.
- We assume players are rational.
- Expected outcome: (9, 4)
- This is the "Prisoner's Dilemma."

- If they interact: Row $\rightarrow U$, Column $\rightarrow L$.

For strategies:

$(s_1, s_2, \dots, s_i, \dots, s_n)$, s_i is the strategy for player i .

s_i^* is a dominant strategy for player i if:

$$u_i(s_1, s_2, \dots, s_i^*, \dots, s_n) > u_i(s_1, s_2, \dots, s_i, \dots, s_n)$$

for all $s_1 \in A_1, s_2 \in A_2, \dots$

Dominant Strategy Equilibrium

If a game is such that each player i has a dominant strategy s_i^* , then the game has a dominant strategy equilibrium $(s_1^*, s_2^*, \dots, s_n^*)$.

Dominance Solvable

\tilde{s} is a "dominated" strategy for player i if there is another strategy \tilde{s}_i such that:

$$u_i(s_1, s_2, \dots, \tilde{s}_i, \dots, s_n) < u_i(s_1, s_2, \dots, s_i, \dots, s_n)$$

Static games

15 September 2025

Read: Game theory in supply chain analysis (survey paper). (Cachon & Netessine)

Definitions

Game

- A game is defined with n players ($n \geq 2$).
- Set of actions available to i : A_1, A_2, \dots, A_n .
- Strategy space of i : S_1, S_2, \dots, S_n .
- Payoff function: u_1, u_2, \dots, u_n .

$$u_i : S_1 \times S_2 \times \dots \times S_n \rightarrow \mathbb{R}$$

$u_i(s_1, s_2, \dots, s_i, \dots, s_n)$ = Payoff to i when players choose s_1, s_2, \dots

- Depends on (s_1, s_2, \dots, s_n) , not just on s_i .
- Could be different for different players.

Dominant Strategy

s_i is a dominant strategy if:

$$u_i(t_i, \dots, \underline{s_i}, \dots, t_n) > u_i(t_i, \dots, \underline{s'_i}, \dots, t_n)$$

$$\forall t_1 \in S_1, t_2 \in S_2, \dots, t_n \in S_n \quad \text{where} \quad s_i \neq s'_i$$

Strictly Dominated Strategy

Let $t_i \in S_i, s_i \in S_i$.

t_i is strictly dominated by s_i if:

$$u_i(s_i, s_{-i}) \geq u_i(t_i, s_{-i}) \quad \forall s_{-i} \in S_{-i}$$

- A strictly dominated strategy may not exist.
- A rational player will never play a strictly dominated strategy.

	C	M	H
L	6/6	2/8	0/5
M	8/2	4/1	1/3
H	4/10	3/1	2/2

For row players, L is dominated.

For column players, C is dominated.

	M	H
M	4/1	1/3
H	3/1	2/1

∴ Game is effectively

Rationalizability and Beliefs

Belief of player $i \equiv$ some random $B_{-i} \subseteq S_{-i}$.

S_i : Player's best response to B_{-i} .

$$(u_i(s_i, B_{-i}) \geq u_i(s'_i, B_{-i}) \quad \forall s'_i \in S_i)$$

(s_1, s_2, \dots, s_n) is rationalizable if s_i is a best response to some B_{-i} for each player i .

- Belief of i about j can be different from belief of k about j .
- Rationalizability allows for that.

Examples

Example 1:

	<i>D</i>	<i>C</i>
<i>D</i>	-1/-1	9/0
<i>C</i>	0/9	-1/-2

- *C* is dominant strategy for each player.
- *D* is dominated.
- (*C*, *C*) can be rationalized as N.E.

Example 2:

	<i>O</i>	<i>F</i>
<i>O</i>	2/1	0/0
<i>F</i>	0/0	1/2

- No dominant/dominated strategy.
- N.E. = (0, 0) (pure strategies)
- Rationalizable strategies: all rationalizable (*O*, *F*), (*F*, *O*), etc.

Example 3:

	<i>L</i>	<i>R</i>
<i>U</i>	8/8	5/9
<i>D</i>	9/5	6/6

- *D* is dominant.
- *U* is dominated.
- *R* is dominant.
- *L* is dominated.

Example 4:

	<i>L</i>	<i>M</i>
<i>V</i>	1/0	1/2
<i>H</i>	0/3	2/0

- *R* is dominated.
- Only N.E. rationalizable.
- *V* is dominating, *M* is dominating.

More Games

17 September 2025

1 Cournot Competition

17 September 2025

1.1 Setup

- 2 firms: i and j (quantity competition)
- Marginal production cost = c (cost to produce 1 item)
- Firms choose quantities q_i and q_j simultaneously
- Unit price = $a - (q_i + q_j)$

Question: What are equilibrium quantities chosen by the firms?

(In game theory context)

- Number of players = 2 (i and j)
- Strategy space:

$$\text{Firm } i : [0, \infty) \quad (1)$$

$$\text{Firm } j : [0, \infty) \quad (2)$$

Payoff for firm i : (Revenue - cost = Profit)

$$U_i(q_i, q_j) = q_i \cdot (\text{unit price} - \text{marginal cost}) \quad (3)$$

$$= q_i(a - q_i - q_j - c) \quad (4)$$

$$\therefore U_i(q_i, q_j) = q_i(a - q_i - q_j - c) \quad (5)$$

1.2 Finding Nash Equilibrium

(q_i^*, q_j^*) are Nash Equilibrium if:

$$U_i(q_i^*, q_j^*) \geq U_i(q_i, q_j^*) \quad \forall q_i^* \neq q_i \quad (6)$$

$$U_i(q_i^*, q_j^*) \geq U_i(q_i^*, q_j) \quad \forall q_j^* = q_j \quad (7)$$

Suppose firm j produces \hat{q}_j . Then q_i^* is the optimal reaction of firm i :

$$\max_{q_i} (q_i(a - q_i - \hat{q}_j - c)) \quad (8)$$

where \hat{q}_j is a known fixed number (essentially a constant).

$$\pi(q_i) = q_i(a - q_i - \hat{q}_j - c) \quad (9)$$

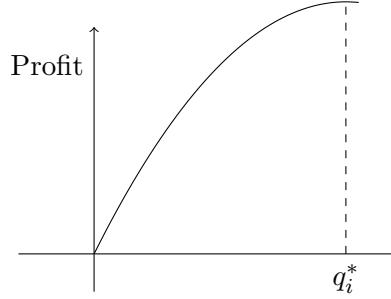
$$\pi'(q_i) = (a - q_i - \hat{q}_j - c) + q_i(-1) = 0 \quad (10)$$

$$a - q_i - \hat{q}_j - c - q_i = 0 \quad (11)$$

$$\therefore q_i^* = \frac{a - \hat{q}_j - c}{2} \quad (12)$$

Since $\pi''(q_i) = -2 < 0 \Rightarrow q_i^*$ is a max.

If you plot a profit function:



Similarly, $q_j^* = \frac{a - q_i^* - c}{2}$

For both firms to get equilibrium:

$$q_i^* = \frac{a - q_j^* - c}{2} \quad (13)$$

$$q_j^* = \frac{a - q_i^* - c}{2} \quad (14)$$

Solving:

$$\therefore q_i^* = q_j^* = \frac{a - c}{3} \quad (15)$$

If both firms were owned by the same entity:

$$\max_{q_i, q_j} \{q_i(a - q_i - q_j - c) + q_j(a - q_i - q_j - c)\} \quad (16)$$

$$= \max_{q_i, q_j} \{(q_i + q_j)(a - c - (q_i + q_j))\} \quad (17)$$

Consider $q_i + q_j = q$:

$$\max_q \{q(a - c - q)\} \quad (18)$$

In that case:

$$q_i^{opt} + q_j^{opt} = \frac{a - c}{2} \quad (19)$$

$$\therefore q_i^{opt} = q_j^{opt} = \frac{1}{4}(a - c) \quad (20)$$

(Like prisoner's dilemma)

Even though $\frac{1}{4}(a - c)$ is better, if q_i plays that, j will play $q_j^* = \left(\frac{a-c}{2}\right) - \frac{1}{2}\left(\frac{a-c}{4}\right)$

\therefore they will both end up playing sub-optimally, i.e., $\frac{(a-c)}{3}$

1.3 Why will q_j produce more?

q_j produces more, even though price will go down; the volume still gives q_j more profit than q_i .

So when we say:

$$q_i^* = \frac{a - q_j^* - c}{2} \quad (21)$$

So whatever i thinks j will do:

$$q_i^* = \left(\frac{a-c}{2} \right) - \frac{1}{2}(q_j^*) \quad (22)$$

Since q_j cannot be negative ($q_j \geq 0$):

$$\Rightarrow q_i^* \leq \left(\frac{a-c}{2} \right) \quad (23)$$

$\therefore i$ should never produce more than $\left(\frac{a-c}{2} \right)$

Similarly, $q_j^* \leq \left(\frac{a-c}{2} \right)$

We know $q_i^{opt} = q_j^{opt} = \frac{1}{4}(a-c)$

\therefore min quantity i & j can produce: $\frac{1}{4}(a-c)$

(See full working in Tirole's textbook)

2 Bertrand Duopoly

("Price competition")

2.1 Setup

- 2 firms: i and j
- Prices: P_i and P_j where $a > 0$, $b > 0$, and c is the same

Demand:

$$\text{Firm } i = a - P_i + bP_j \quad (24)$$

$$\text{Firm } j = a - P_j + bP_i \quad (25)$$

Market Size: "a"

Production cost = c

Equilibrium prices: (P_i^*, P_j^*) ?

Payoff for firm i : (price - cost)

$$\pi_i(P_i) = (a - P_i + bP_j)(P_i - c) \quad (26)$$

what i thinks choice j makes

$$\therefore P_i^* = \arg \max_{P_i \geq c} [(a - P_i + bP_j)(P_i - c)] \quad (27)$$

$$P_i^* = \frac{1}{2}(a + bP_j^* + c) \quad (28)$$

$$P_j^* = \frac{1}{2}(a + bP_i^* + c) \quad (29)$$

2.2 Solving the 2 equations

$$P_i^* = P_j^* = \frac{a+c}{2-b} \quad (b < 2) \quad (30)$$

This is the equilibrium strategy.

3 Commons Problem

Public good: K agents (k_1, k_2, \dots, k_n) units

Agent i can claim any amount k_i

$$\text{Utility for } i = \ln(k_i) + \ln\left(k - \frac{\sum k_j}{3}\right)$$

log is concave \Rightarrow these are good models of utility function (e.g., utility of money)

Let's try for 3 agents: (k_1^*, k_2^*, k_3^*)

Suppose agent j uses k_j^* , agent 3 uses k_3^*

Then agent 1's optimal solution:

$$\max_{k_1} [\ln(k_1) + \ln(k - k_1 - k_2^* - k_3^*)] \quad (31)$$

Taking derivatives:

$$\frac{1}{k_1} - \frac{1}{k - k_1 - k_2^* - k_3^*} = 0 \quad (32)$$

$$\therefore k - k_1 - k_2^* - k_3^* = k_1 \quad (33)$$

$$\Rightarrow \therefore k_1 = \frac{k - k_2^* - k_3^*}{2} \quad (34)$$

Assume all k_i are identical:

$$\therefore k^* = \frac{k - 2k^*}{2} \quad (35)$$

$$\Rightarrow \therefore k^* = \frac{k}{4} \quad (36)$$

In general: $k_i^* = \frac{k}{(n+1)}$ if we maximize utility for each agent

Optimal consumption for 3 agents (as a whole) :

Let $k_1 + k_2 + k_3 = K$

$$\max_{k_1, k_2, k_3} [\ln(k_1) + \ln(k - K) + \ln(k_2) + \ln(k - K) + \ln(k_3) + \ln(k - K)]$$

$\therefore k_i^* = \frac{k}{2n}$ maximizes overall utility for everybody

3.1 Notes

- Each agent's optimal problem means they give less weighting to overall consumption, because they only care about their own utility.

- If society wants to optimize overall welfare, there needs to be more weight on overall consumption and less on purely private benefits.
- agents consume more than they should compared to the optimal social solution. This is because of externalities — if part of the consumption cost is incurred by society as a whole, an individual tends to ignore it. As a result, we over-utilize the commons, since everyone is acting in their own self-interest without accounting for the shared damage.
- To regulate that, we can introduce tolls, penalties, or corrective taxes (Pigouvian taxes). These policies work by making private agents “internalize” the externality, i.e. aligning private incentives with the social optimum.

4 Final Offer Arbitration

27 September 2025

4.1 Setup

- Union \sim arbitrator
- Firms
- Firm arguing over wages; wise arbitrator

Game:

- Firm proposes a wage offer w_F simultaneously
- Union chooses a wage after w_U

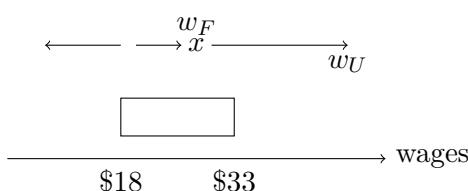
Arbitrator has an ideal settlement:

- Required to choose w_F or w_U

Arbitrator commits to choosing after doesn't in x .

From the union, believe x is a randomly distributed with distribution $F(x)$.

Example: $F(x)$



Then w_F is chosen (x is closer to w_F)

4.2 Equilibrium Analysis

What do the firm & union do in equilibrium?

Analysis: Suppose union picks w_U , firm picks w_F

$$P(w_U \text{ is chosen}) = P\left(x > \frac{w_U + w_F}{2}\right) = 1 - F\left(\frac{w_U + w_F}{2}\right) \quad (37)$$

$$P(w_F \text{ is chosen}) = P\left(x < \frac{w_U + w_F}{2}\right) = F\left(\frac{w_U + w_F}{2}\right) \quad (38)$$

\therefore Expected wage agreement is: $G(w_U, w_F)$

$$= w_F \cdot F\left(\frac{w_U + w_F}{2}\right) + w_U \cdot \left(1 - F\left(\frac{w_U + w_F}{2}\right)\right) \quad (39)$$

If (w_U^*, w_F^*) is NE (Nash equilibrium), then:

w_F^* should minimize $G(w_U^*, w_F)$ over all w_F

w_U^* should maximize $G(w_U, w_F^*)$ over all w_U

$\therefore w_F$ should solve:

$$\min_{w_F} \left\{ w_F \cdot F\left(\frac{w_F + w_U^*}{2}\right) + w_U \cdot \left(1 - F\left(\frac{w_F + w_U^*}{2}\right)\right) \right\} \quad (40)$$

Similarly:

$$\max_{w_U} \left\{ w_F^* \cdot F\left(\frac{w_F^* + w_U}{2}\right) + w_U \cdot \left(1 - F\left(\frac{w_F^* + w_U}{2}\right)\right) \right\} \quad (41)$$

First order conditions:

At $w_F = w_F^*$:

$$0 = \frac{1}{2} \cdot w_F \cdot F'\left(\frac{w_F + w_U^*}{2}\right) + F\left(\frac{w_F + w_U^*}{2}\right) - w_U \cdot \frac{1}{2} \cdot F'\left(\frac{w_F + w_U^*}{2}\right) \quad (42)$$

At $w_U = w_U^*$:

$$0 = w_F \cdot F'\left(\frac{w_F + w_U^*}{2}\right) \cdot \frac{1}{2} - 1 + \left(1 - F\left(\frac{w_F + w_U^*}{2}\right) - w_U \cdot \frac{f(w_F^* + w_U)}{2}\right) \quad (43)$$

Equating both:

$$\frac{1}{2}(w_U^* - w_F^*) \cdot F'\left(\frac{w_U^* + w_F^*}{2}\right) = F\left(\frac{w_F^* + w_U^*}{2}\right) \quad (44)$$

$$\Rightarrow F\left(\frac{w_F^* + w_U^*}{2}\right) = \frac{1}{2} \quad (45)$$

At equilibrium, the avg of their choices would be at the median of the observations.

$$P(w_F) = P(w_U) = \frac{1}{2} \quad (46)$$

$$\therefore w_U^* - w_F^* = \frac{1}{F' \left(\frac{w_F^* + w_U^*}{2} \right)} \quad (47)$$

(density fn.)

Example: $F(x)$ is normally distributed $\sim N(m, \sigma^2)$

$$\therefore \frac{w_U^* - w_F^*}{2} = \frac{1}{f(m)} = \sqrt{2\pi}\sigma \quad (48)$$

$$\frac{w_U^* + w_F^*}{2} = m \quad (\text{for normal distribution, mean} = \text{median} = m) \quad (49)$$

Thus:

$$w_F^* = m - \left(\sqrt{\frac{\pi}{2}} \right) \sigma \quad (50)$$

$$w_U^* = m + \left(\sqrt{\frac{\pi}{2}} \right) \sigma \quad (51)$$

\Rightarrow "gap" increased with uncertainty.

\Rightarrow If they don't know what the arbitrator picks, firm & union tend to choose close to end points

5 Bertrand Competition (Variation)

2 firms: i & j , unit production cost = c

Prices: P_i, P_j

$$\pi(P_i, P_j) = \begin{cases} (a - P_i) \cdot (P_i - c) & P_i < P_j \\ 0 & (a - P_i) \cdot (P_i - c) \\ P_i > P_j & \\ \frac{(a - P_i)}{2} \cdot (P_i - c) & P_i = P_j \end{cases} \quad (52)$$

Note: $P_i > c$ can never be supported as a NE

$\Rightarrow P_i^* = P_j^* = c$ is the unique NE

5.1 Discrete Model

Suppose Ps are required to be in the set $\{c, c + \varepsilon, c + 2\varepsilon, c + 3\varepsilon, \dots\}$

" ε " = increment

What are the Nash equilibria in this model?

(c, c) is a NE

$(c + \varepsilon, c + \varepsilon)$ is also a NE

(Though one firm can undercut to c , they reduce their profit to 0.)

6 Mixed Strategies (Nash Equilibria)

Exercise: Find a mixed strategy equilibrium

	U	D	
Alice	0,0	0,-1	
Bob	0,-10	-90,-6	

Suppose Alice plays U with prob. (p) , D with prob. $(1 - p)$

Bob plays L with prob. q , R with prob. $(1 - q)$

What is Bob's best response?

If Bob picks L , expected payoff:

$$p(0) + (1 - p)(-10) = 10p - 10 \quad (53)$$

Bob picks R , expected payoff:

$$p(-1) + (1 - p)(-6) = 5p - 6 \quad (54)$$

\Rightarrow Bob's best response

$$10p - 10 > 5p - 6 \quad (55)$$

$$5p > 4 \quad (56)$$

$$p > \frac{4}{5} \quad (57)$$

$$\text{Best response} = \begin{cases} L & \text{if } p > 4/5 \\ R & \text{if } p < 4/5 \\ \{L, R\} & \text{if } p = 4/5 \end{cases}$$

Suppose Bob plays L with prob. q , R with prob. $(1 - q)$

Alice's best response:

If Alice plays U expected payoff:

$$q(0) + (1 - q)(0) = 0 \quad (58)$$

If Alice plays D expected payoff:

$$q(10) + (1 - q)(-90) = 100q + 90 \quad (59)$$

Alice's best response:

$$\begin{cases} U & \text{if } q < 9/10 \\ D & \text{if } q > 9/10 \\ \{U, D\} & \text{if } q = 9/10 \end{cases} \quad (60)$$

	O	F
O	2,1	0,0
F	0,0	1,2

(0, 0) (F, F) are pure strategy NE

Suppose Alice plays O with prob. (p) , F with prob. $(1 - p)$

Bob's best response:

If bob plays $O = p(1) + (1 - p)(0) = p$

$$F = p(0) + (1 - p)2 = 2 - 2p \quad (61)$$

$$p > 2/3 \quad (62)$$

$$p < 2/3 \quad (63)$$

$$\text{Bob's best response} = \begin{cases} O & \text{if } p > 2/3 \\ F & \text{if } p < 2/3 \\ \{O, F\} & \text{if } p = 2/3 \end{cases}$$

Suppose Bob plays O with prob. q , F with prob. $(1 - q)$

If Alice picks $O = q(2) + (1 - q)(0) = 2q$

$$F = q(0) + (1 - q)1 = 1 - q \quad (64)$$

$$2q > 1 - q \quad (65)$$

$$q > \frac{1}{3} \quad (66)$$

$$\text{Alice's best response} = \begin{cases} O & \text{if } q > 1/3 \\ F & \text{if } q < 1/3 \\ \{O, F\} & \text{if } q = 1/3 \end{cases}$$

$\therefore p = \frac{2}{3}, q = \frac{1}{3}$ is N.E \leftarrow mixed strategy Nash equilibria

$p = 1, q = 1$ is N.E

$p = 0, q = 0$ is N.E

7 Two-Person Zero Sum Games

$$a_{ij} = \begin{cases} \text{Payoff to Alice (from Bob) if} \\ \text{Alice plays strategy } i \text{ & Bob = } j \end{cases} \quad (67)$$

		Bob		
		$y_1, y_2 \dots$	\dots	y_n
Alice	x_1			
	x_2		a_{ij}	
	\vdots			
	x_m			

$(a_{ij} - a_{ij})$ zero sum

Alice's $x_i^* = (x_1^*, x_2^*, \dots, x_m^*)$ are NE if & only if:

Bob's $y_j^* = (y_1^*, y_2^*, \dots, y_n^*)$ are NE if & only if

$$U(x, y) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} y_j^* \quad (68)$$

$\therefore x^* \& y^*$ are NE if & only if:

$$[box=\boxed{\text{align U(x, y*)} \leq U(x^*, y^*) \leq U(x^*, y)}]$$

7.1 Alternative Approach

Fix Bob: $(y_1^*, y_2^*, \dots, y_n^*)$

Alice's expected payoff for playing strategy i (Alice plays i^{th} row):

$$= a_{i1} y_1^* + a_{i2} y_2^* + \dots + a_{in} y_n^* \quad (69)$$

Alice's best response = $\max_{1 \leq i \leq m} \left\{ \sum_{j=1}^n a_{ij} y_j^* \right\}$

7.2 Extended

Let $V^* = \max \left\{ \sum_{j=1}^n a_{ij} y_j^* \right\}$

If for some k , $\sum_{j=1}^n a_{kj} y_j^* < V^*$ then $x_k^* = 0$

So: $\sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} y_j^* \right) x_i^* = \sum_{i=1}^m V^* x_i^* = V^*$

Also, $V^* = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} y_j^* \right) x_i^* \leq \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} y_j^* \right) x_i^*$

$$= \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} x_i^* \right) y_j^* \quad (70)$$

Bob's problem: (Bob plays j^{th} column)

For any (x_1, \dots, x_m) that Alice chooses

Bob's payoff = $\sum_{i=1}^m a_{ij} x_i^*$

\therefore Bob's response $w = \min_{1 \leq j \leq n} \{\sum_{i=1}^m a_{ij} x_i^*\}$

(Remember - zero sum game so if Alice = 9, Bob = -9)

7.3 Completing the Proof

$$\therefore W^* = \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} x_i^* \right) y_j^* \quad (71)$$

$$\geq \sum_{j=1}^m \left(\sum_{i=1}^m a_{ij} x_i^* \right) y_j^* \quad (72)$$

$\therefore (x^*, y^*)$ is a N-E if \Rightarrow

[box=1] align $U_1(x, y^*) \leq U_1(x^*, y^*)$

$$\forall (x_1, x_2, \dots, x_m)$$

$$\text{s.t. } \sum x_i = 1$$

$$x_i \geq 0$$

Bob:

$$U_2(x^*, y) \leq U_2(x^*, y^*) \quad (73)$$

$$\forall (y_1, \dots, y_n) \quad (74)$$

$$\text{s.t. } \sum y_j^* = 1 \quad (75)$$

$$y_j \geq 0 \quad (76)$$

$$-U_1(x^*, y) \leq -U_1(x^*, y^*) \quad (77)$$

$$\Rightarrow U_1(x^*, y) \geq U_1(x^*, y^*) \quad (78)$$

[box=1] align $\therefore U_1(x, y^*) \leq U_1(x^*, y^*) \leq U_1(x^*, y)$

7.4 Bob's Perspective

$$U_1(x^*, y^*) \leq U_1(x^*, y) \quad (79)$$

$$(\Rightarrow) \leq \min_{y \in S_2} \{U_1(x^*, y^*)\} \quad (80)$$

$$\leq \max_{x \in S_1} \left\{ \min_{y \in S_2} \{U_1(x, y)\} \right\} \quad (81)$$

7.5 Alice's Perspective

$$U_1(x^*, y^*) \geq U_1(x, y^*) \quad (82)$$

$$(\Rightarrow) \geq \max_{x \in S_1} \{U_1(x, y^*)\} \quad (83)$$

$$\geq \min_{y \in S_2} \left\{ \max_{x \in S_1} \{U_1(x, y)\} \right\} \quad (84)$$

\therefore N-E for 2 person zero sum games:

$$U_1(x^*, y^*) = \max_{x \in S_1} \min_{y \in S_2} \{U_1(x, y)\}$$

7.6 Example with Payoff Matrix

		Bob		
		q_1	q_2	q_3
Alice	P_1	5	1	1
	P_2	3	0	8
	P_3	4	4	0

Alice's payoff:

$$U : 5q_1 + q_2 + q_3 \quad (85)$$

$$M : 3q_1 + 0 + 3q_3 \quad (86)$$

$$D : 4q_1 + 4q_2 + 0 \quad (87)$$

Min W:

$$W \geq 5q_1 + q_2 + q_3 \quad (88)$$

$$W \geq 3q_1 + 3q_3 \quad (89)$$

$$W \geq 4q_1 + 4q_2 \quad (90)$$

$$q_1 + q_2 + q_3 = 1 \quad (91)$$

$$q_1, q_2, q_3 \geq 0 \quad (92)$$

Bob's payoff/loss:

$$L : 5p_1 + 3p_2 + 4p_3 \quad (93)$$

$$C : p_1 + 4p_3 \quad (94)$$

$$R : p_1 + 3p_2 \quad (95)$$

Bob wants to min:

$$\min_{q_1, q_2, q_3} \{ \max \{ 5q_1 + q_2 + q_3, 3q_1 + 3q_3, 4q_1 + 4q_2 \} \} \quad (96)$$

$$q_i \geq 0 \quad (97)$$

$$\sum q_i = 1 \quad (98)$$

This is equivalent to: W

Bob's payoff/loss (zero sum):

$$L : 5p_1 + 3p_2 + 4p_3 \quad (99)$$

$$C : p_1 + 4p_3 \quad (100)$$

$$R : p_1 + 3p_2 \quad (101)$$

Bob's optimal loss:

$$\max_{p_1, p_2, p_3} \{ \min \{ 5p_1 + 3p_2 + 4p_3, p_1 + 4p_3, p_1 + 3p_2 \} \} \quad (102)$$

$$\sum p_i = 1 \quad (103)$$

$$p_i \geq 0 \quad (104)$$

∴ LP problem in this case:

Max V

$$V \leq 5p_1 + 3p_2 + 4p_3 \quad (105)$$

$$V \leq p_1 + 4p_3 \quad (106)$$

$$V \leq p_1 + 3p_2 \quad (107)$$

8 Sequential Games / Extensive Form Games

6 October 2025

8.1 Games that unfold over time

8.1.1 Ingredients:

1. Set of players N
2. Payoff function for each players - payoff depends on outcomes & outcomes depend on actions of all players
3. Sequence in which players move
4. Available actions when it is a players turn to move
5. Knowledge of a player when it's their turn to move
6. Moves by Nature (= Prob. over exogenous events)

9 Sequential Games / Extensive Form Games

Sequential games are games that unfold over time.

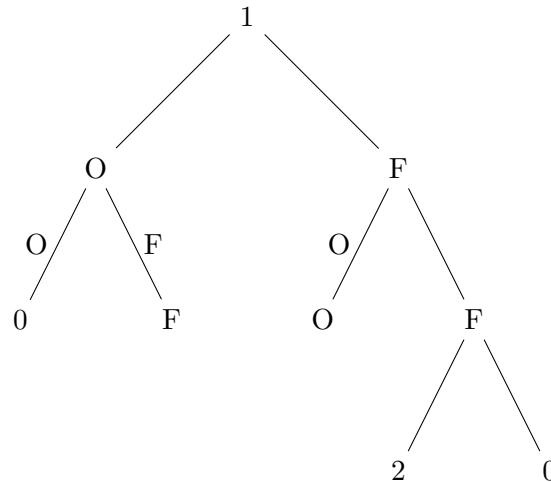
9.1 Key Ingredients

1. **Set of players N**
2. **Payoff** π_i for each player i
 - Payoff depends on outcomes; outcomes depend on actions of all players
3. **Sequence** in which players move
4. **Available actions** when it is a player's turn to move
5. **Knowledge of a player** when it's their turn to move
6. **Moves by nature** (probability over exogenous events)

9.2 Game Trees

Game trees are analogous to decision trees for single-player problems.

9.2.1 Example: Sequential Battle of the Sexes



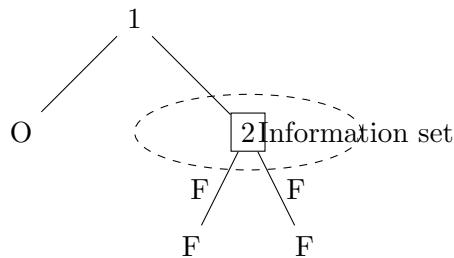
Note: In this example, player 1 moves first, choosing between O (Opera) and F (Football). Player 2 then observes player 1's choice and responds accordingly.

9.3 Information Sets

Information Set for player i : A partition of the nodes of player i such that player i cannot distinguish nodes within an information set.

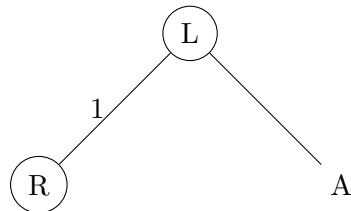
Note: One cannot distinguish nodes within an information set.

If nodes x and x' are in the same information set for player i , then their available actions are the same at these nodes.



10 Example Games

10.1 Game with Information Sets



Information sets for:

- Player 1: $\{A\}$
- Player 2: $\{B\}$ (assumed from context)

- Player 3: ϕ (Dummy player)
- Player 4: $\{D\}, \{E\}$

Terminal nodes: $\{C, F, G, H, I\}$

With terminal node payoffs shown in boxes at the leaves.

10.2 Deck of Cards Game

Game Description:

1. **Deck of cards:** Player 1 pulls out a card but does not look at it.

2. **After drawing,** player 1 chooses to either:

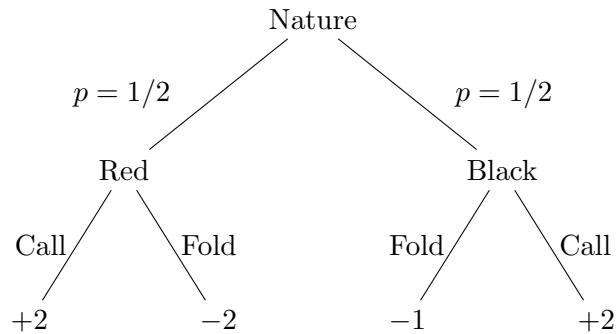
- Call (C), or
- Fold (F)

3. **Outcomes:**

[label=(c)]

- (a) If he folds, he pays \$1 to player 2
- (b) If he calls, he pays \$2 to player 2 if the card drawn is black
- (c) If he calls, he receives \$2 from player 2 if the card drawn is red

10.2.1 Game Tree



Note: Technically only 2 strategies for player 1 (they don't know if card is R/B; they can only C/F). Player 2 is a dummy player.

10.3 Same Game with Different Structure

Alternative representation where player 1 cannot observe nature's move:



11 Solution Concepts

11.1 Pure Strategy

A **pure strategy** is a complete plan of what player i would do, i.e., pick an action.

Formally: $S_i : H_i \rightarrow A_i$

As each $h_i \in H_i$, pick an action from $A_i(h_i)$.

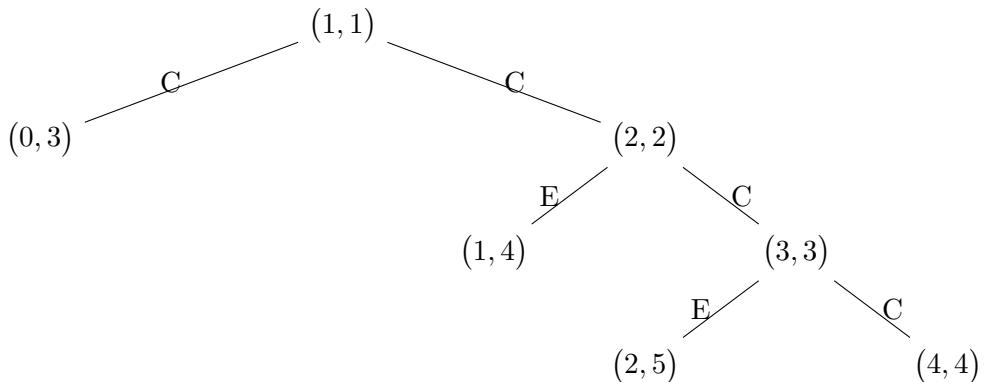
12 Extensive Form Games

13 October 2025

12.1 Properties

1. **1 has 6 descendants:** 2, 3, ...
2. **2 has 4 strategies**
3. Player assignments at different nodes

12.2 Centipede Game



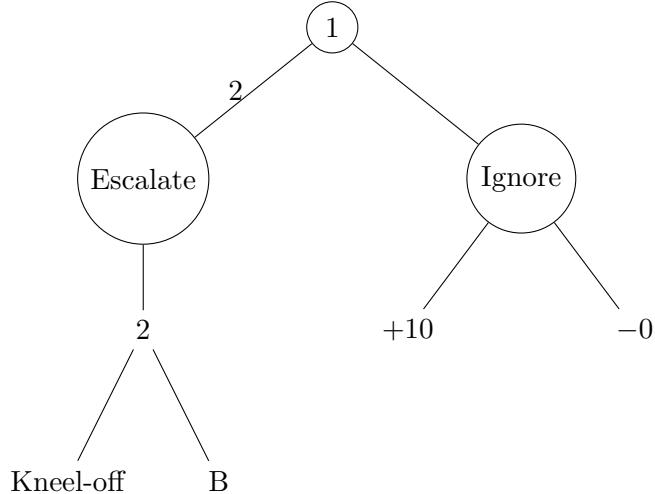
Where C = Continue, E = End

Note: \$ keeps increasing.

Backward induction is very robust here because the game should theoretically end at the first step, but if it would remain at 2...

13 Example: Two Countries Game

Countries "1" and "2" game example:



Simultaneous move game:

	-5, -5	-100, -100
D	R, 5, -5	-100, -100

Everybody loses.

13.1 Equivalent Normal Form Game

If they get to node 1, then $E \rightarrow 2N$, which is a Nash Equilibrium (NE).

	γ	d
R	-5, -5	-100, -100
D	-100, -100	-100, -100

(R, γ) is NE

(D, d) is NE

14 Subgame Perfect Nash Equilibrium

14.1 Definition

Subgame perfect NE: A Nash equilibrium where the strategy profile induces a Nash equilibrium in every subgame.

I want to have equilibria that are credible — not just the original game, but from any game from a subtree.

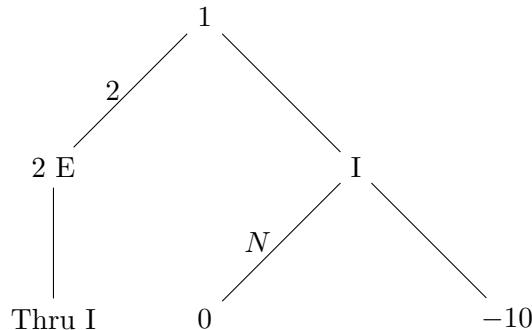
14.2 Example Analysis

	Nk	Nd	Bk	Bd
IR	0,0	0,0	0,0	0,0
ID	0,0	0,0	0,0	0,0
ER	-5,-5	-100,-100	-10,-10	-10,-10
ED	-100,-100	-100,-100	-10,-10	-10,-10

Where:

- I = Ignore
- E = Escalate
- R = Retaliate
- D = Don't retaliate
- N = Negotiation
- k = kneel
- B = Bomb

14.3 Additional Analysis



Notes:

- 2 picks N (choosing N based on payoffs)
- 1 picks I (ignoring based on backward induction)

15 Cournot Game

15.1 Setup

2 firms - each firm produces production cost c .

1. Firm 1 picks q_1
2. Firm 2 observes q_1 and picks q_2

Price in market: $a - q_1 - q_2$

Equilibrium strategies for both firms?

Recall: In simultaneous games, $q_1^* = q_2^* = \frac{a-c}{3}$

15.2 Analysis

Suppose firm 1 picks $q_1 \sim \dots$ what is the optimal choice of firm 2?

Firm 2's problem: $\max_{q_2} \{q_2(a - q_1 - q_2 - c)\}$

This is the "profit"

$$q_2^* = \frac{a - c - q_1}{2}$$

Strategy of firm 2: $q_2^* = f(q_1) = \frac{a-c-q_1}{2}$

Note: Strategy of firm 2 is a function that maps firm 1's action (a number, real) to an action.

15.3 Finding Firm 1's Optimal Choice

Firm 1 knows 2 is rational and will choose $(\frac{a-c-q_1}{2})$.

\therefore It's optimal choice is:

$$\begin{aligned} & \max_{q_1} \left\{ q_1 \left(a - c - q_1 - \frac{a - c - q_1}{2} \right) \right\} \\ &= \max_{q_2} \left\{ a_1 \left(a - c - q_1 - \frac{a - c - q_1}{2} \right) \right\} \\ & \therefore q_1^* = \frac{a - c}{2} \\ & \therefore q_2^* = \frac{a - c}{2} - \frac{a - c}{2} = \frac{a - c}{4} \\ & q_{1,2}^* = \frac{a - c}{4} \end{aligned}$$

15.4 Equilibrium Strategies

$$q_1^* = \frac{a - c}{2}$$

$$f_2(q_1) = \begin{cases} \frac{a-c-q_1}{2} & q_1 \leq a - c \\ 0 & q_1 > a - c \end{cases}$$

16 Example: Two-Stage Game

16.1 Stage 1 ($t = 1$)

	m	f
M	4, 4	-1, 5
F	5, -1	1, 1

16.2 Stage 2 ($t = 2$)

	ℓ	g
L	0, 0	-4, -1
G	-1, 4	-3, -3

16.3 Question

Can we support (M, m) as part of an equilibrium outcome?

16.4 “Carrot and Stick Approach”

If (M, m) is played in stage 1 ($t = 1$), pick (L, ℓ) otherwise pick (G, g) .

(Penalize players from deviating)

Strategies: Player 1 plays M

If player 2 picks m and then ℓ , \therefore payoff = 4 + 0 = 4

If player 2 picks f and then g , \therefore player 1 plays G, \therefore payoff = 5 + (-3) = 2

Note: This would not be an outcome if this was a single stage.

16.5 Transformed Game Matrix

16.5.1 At $t = 1$

	m	f
M	4, 4	-1, 5
F	5, -1	1, 1

16.5.2 At $t = 2$

	ℓ	g
L	4, 4	-1, 5
G	5, -1	(1, 1) ✓ NE

So in essence the game becomes:

	m	f
M	5, 5	0, 6
F	6, 0	(2, 2)

F dominates M \therefore (2, 2) is the Nash equilibrium.

(Penalty for deviating) does not work because there is a unique equilibrium.

We don't possess a “tool” to penalize the other player with.

17 Summary

1. If you pick a NE of each stage game in isolation

→ can be supported as a subgame perfect NE

2. “Carrot & stick game” —

Non equilibrium outcomes can be supported as a subgame perfect equilibrium outcome in multistage games for a large enough discount factor.

18 Repeated Games

20 October 2025 * stage game — repeated $t = 1, 2, \dots, T$ (T can be ∞)

Stage game could be a normal form game.

Players utility: u_1, u_2, \dots

sum: $\sum v_t$ (could be infinite)

Discounting: discount factor δ^t

$$\text{reward} = \frac{\infty}{\sum_{t=1}^{\infty} \delta^{t-1} v_t} \quad 0 \leq \delta \leq 1$$

Interpretation:

- Earlier rewards are worth more than later rewards
- $(1 - \delta^t)$ = probability of terminating at each stage

18.1 Equilibria in Infinitely Repeated Games

Pure strategy: A choice of action at each decision point

19 Example: Infinitely Repeated Prisoner's Dilemma

	m	f
M	4, 4	-1, 5
F	5, -1	1, 1

Possible strategies:

1. Play F every stage
2. Play F at odd t , M at even t
3. Play M initially, if the other player plays F then plays F otherwise M.
4. Play M initially, if the other player ever plays F, then pick F forever (otherwise M)

↑ **Grim / Trigger strategy**

(once you lose trust it's lost forever)

20 “Conditional” Strategies

Use strategies in later stage games to support good behavior in earlier stage games.

20.1 Payoffs

Payoffs: $v_1, v_2, \dots, v_T, \dots$

Discounted payoff: $\sum_{t=1}^{\infty} \delta^{t-1} v_t = \cdot V$

“net present value of payoff”

The average payoff of $[v_1, v_2, \dots, v_T, \dots]$

$$= [\bar{v}, \bar{v}, \dots, \bar{v}, \dots]$$

Earning \bar{v} in each step gives a total discounted payoff:

$$V = \left(\sum_{t=1}^{\infty} \delta^{t-1} \bar{v} \right) = \frac{\bar{v}}{1 - \delta}$$

So, $\therefore \bar{v} = V \cdot (1 - \delta)$

21 Repeated Prisoner’s Dilemma Analysis

	m	f
M	4, 4	-1, 5
F	5, -1	1, 1

Can (M, m) be sustained as an equilibrium in an infinitely repeated game?

21.1 “Carrot & Stick” Theory (Grim Trigger)

Row Player:

Stick: Play F following any outcome other than (M, m) at every earlier stage.

Carrot: If entire past history $= \{(M, m), (M, m) \dots\}$, then play M.

21.1.1 Column Player’s Response

They play $f \therefore$ following grim trigger

$$5 + \frac{1 + 1 + \dots}{t = 0} = \frac{5 + \delta^1}{1 - \delta}$$

They play M:

$$\therefore 4 + \frac{4\delta + 4\delta^2 + \dots}{1} = \frac{4}{1 - \delta}$$

21.2 Condition for Cooperation

$$\frac{4}{1 - \delta} > \frac{5 + \delta^1}{1 - \delta}$$

$$\therefore 4 > 5 - 4\delta$$

$$4\delta > 1$$

$$\delta > \frac{-1}{4}$$

As long as $\delta \geq \frac{1}{4}$, the additional dollar you get by playing f does not equate to losing \$3 every stage thereafter.

\therefore if $\delta > \frac{1}{4}$, then playing M is optimal.

Same for row player's side (by symmetry).

\therefore this is subgame perfect NE as long as $\delta > \frac{1}{4}$.

22 Bargaining Games

22 October 2025

22.1 Folk Theorem

22.1.1 I. Ultimatum Game — 2 players split a dollar

Player 1 offers split $(s, 1 - s)$

Player 2 accepts/rejects

$$S_1 = [(s, 1 - s) \mid 0 \leq s \leq 1]$$

$$S_2 = \begin{cases} \text{Accept all offers above } x \\ \text{reject all offers below } x \end{cases}$$

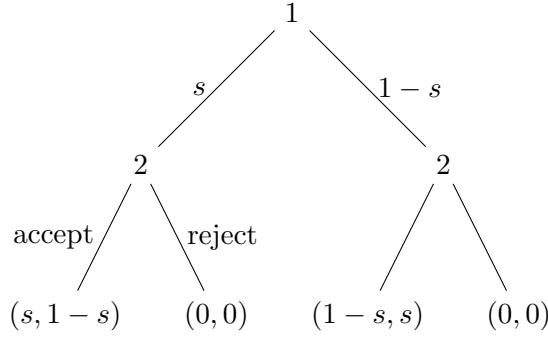
Possible strategies:

$\Rightarrow 1$: offers $(x^*, 1 - x^*)$

2 : $\begin{cases} \text{accepts all offers } 1 - x^* \text{ and above} \\ \text{rejects all below } 1 - x^* \end{cases}$

Assumption: In case of tie, players accept rather than reject.

22.1.2 Game Tree Representation



Conditions:

- $s \geq 0.99$
- $1 - s \geq 0.01$

22.1.3 II. Bargaining Game (everything is common knowledge)

Stage 1: Player 1 offers a split $(s_1, 1 - s_1)$

Player 2 accepts | rejects

- s_1 — game proceeds to
- $1 - s_1$ — stage 2

Stage 2: Player 2 offers $(s_2, 1 - s_2)$

Player 1 accepts | rejects

- s_2 — game proceeds to
- $1 - s_2$ — stage 3

Stage 3: Player 1 offers split $(s_3, 1 - s_3)$

Player 2 accepts or rejects

$$\begin{cases} s_3 \\ 1 - s_3 \end{cases}$$

$$\begin{bmatrix} \hat{s} \\ 1 - \hat{s} \end{bmatrix}$$

\hat{s} = some option (fixed), known to all from day 1

22.2 Optimal Offer Analysis

Optimal offer of player 1 on day 3 is $s_3 = \hat{s}$

ζ then player 2 should offer $s_2 \leq \hat{s}$, but player 1 would reject $s_2 < \hat{s}$.

ζ player 1 should offer $s_1 \geq \hat{s}$.

(This is all assuming value of money stays constant)

22.2.1 Impose Time Value of Money (discount factor δ)

Day 3: same choice \hat{s}

Day 2: player 2 should offer $s_2 = \delta^* \hat{s}$

$$1 - s_2 = (1 - \delta \hat{s})$$

\therefore player 1 would accept any offer that gives them at least $\delta \hat{s}$.

Day 1: player 1 should offer

If s_1 is such that $1 - s_1 \leq \delta(1 - \delta \hat{s})$, then player 2 rejects.

Otherwise player 2 accepts. \therefore optimal offer:

$$s_1 \leq 1 - \delta(1 - \delta \hat{s})$$

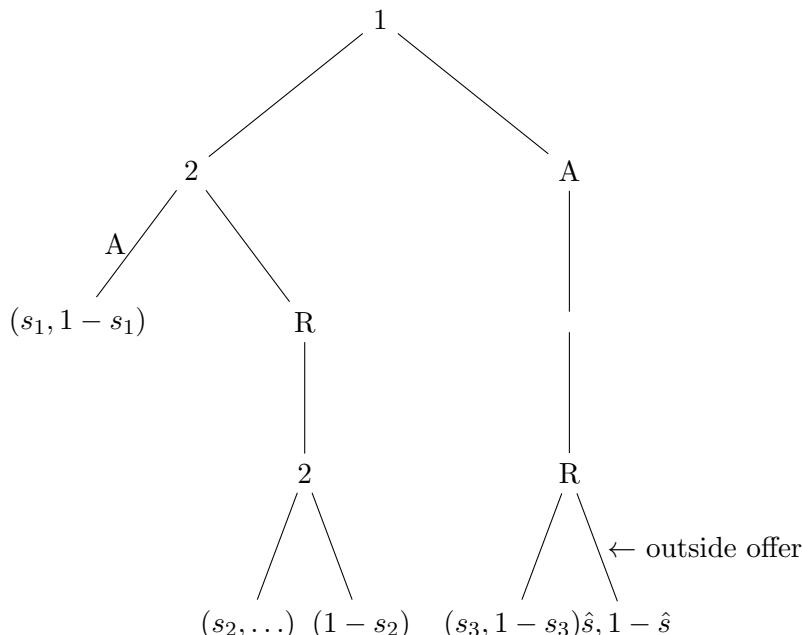
22.3 Extended Game Tree

$$\therefore s_1^* = 1 - \delta + \delta^2 \hat{s}$$

If player 1 chooses $s_1 > s_1^*$, the player 2 rejects

and at day 2, player 1 gets $\delta^2 \hat{s}$

and $\delta^2 \hat{s} < 1 - \delta + \delta^2 \hat{s}$



22.4 Summary of Bargaining Game Results

Player 1 gets: $1 - \delta + \delta^2 \hat{s}$

Player 2 gets: $\delta - \delta^2 \hat{s}$

\therefore player 1 does better if δ close to 1 (e.g., $\delta = 0.95$)

$$\therefore 1 - \delta + \delta^2 \hat{s} \stackrel{?}{>} \delta - \delta^2 \hat{s}$$

$$\frac{1 - \delta + \delta^2}{2} > \frac{\delta - \delta^2}{2}$$

$$\hat{s} = \frac{1}{2}$$

$$\hat{s} = 1$$

$$1 - \delta + \delta^2 > \delta - \delta^2$$

23 Folk Theorem

Let G be a game of complete info. Let $(v_1^*, v_2^*, \dots, v_n^*)$ be the payoffs from a NE of G .

Feasible payoff: Convex hull of payoffs.

	m	f
M	(4, 4)	(-1, 5)
F	(5, -1)	(1, 1)

NE: $(1, 1)$

[Diagram shows feasible payoff region $(4, 4)$ to $(5, -1)$ to $(1, 1)$ with shaded convex hull]

(v_1, \dots, v_n) can be achieved as the average payoff in a subgame perfect NE for δ large enough if
 $\Rightarrow (v_1, \dots, v_n)$ is feasible.

$$\ell : v_i \rightarrow v_i$$

24 Bayesian Games

27 October 2025 n players

Strategy spaces: s_i, \dots, S_n

For player i :

i 's payoff = $u_i(s_1, \dots, s_n)$

Now — many types of player i :

$u_i(s_1, \dots, s_n; t)$ = payoff for player i of type t , when the players use s_1, \dots, s_n resp.

T_i = type space for i

t_i = realized type of i

S_i = strategy space for i

s_i = strategy chosen by i

$\Rightarrow T_1, \dots, T_n$ — Nature draws a type for each player (t_1, \dots, t_n)

i informs i of their type t_i :

Distribution of (t_1, \dots, t_n) is known

24.1 Beliefs

Based on their type, they update their beliefs:

$$\text{belief}_i : P_i(t_{-i} \mid t_i)$$

\downarrow uncertainty that i has about types of other players.

\rightarrow is game of different types of players. Based on my type I have some beliefs of other types.

$$P_i(t_{-i} \mid t_i) = \frac{P(t_{-i}, t_i)}{P(t_i)} = \frac{P(t_{-i}, t_i)}{\sum_{t'_i \in T_i} P(t_{-i}, t'_i)}$$

24.2 Bayes Nash Equilibrium

Bayes NE:

$(s_1^*, s_2^*, \dots, s_n^*)$ is BNE if for $\forall i$, each $t_i \in T_i$:

$$\sum u_i(s_1^*(t_1), s_2^*(t_2), \dots, s_i^*(t_i), \dots, s_n^*(t_n)) \cdot P(t_{-i} \mid t_i)$$

$$t_i \in T_i$$

$$\sum u_i(s_1^*(t_1), \dots, s_n^*(t_n), \dots, s_i(t_i), \dots) \cdot P(t_{-i} \mid t_i)$$

$$s_i(t_i), \dots, s_n(t_n)$$

25 First-Price Auction

2 players, 1 object

Each player has value uniformly distributed in $[0, 1]$

\therefore Type of a player can be = how much they value an object.

Valuations are drawn independently.

Game: First price sealed bid for object.

Highest bid wins object, receives their bid. Other bid pays nothing and gains nothing.

Payoff:

$$\begin{cases} v - b & \text{if they value obj at } v \\ 0 & \text{otherwise} \end{cases}$$

Type space for bids, 1 & 2: $[0, 1]$

Suppose my value is v and I bid b .

Expected payoff: $\max_{0 \leq b \leq v} \{(v - b) \cdot P_i(b \text{ wins})\}$

25.1 Solution

Guess that player 2 bids $\frac{\sqrt{v}}{2}$ ($v < 1$), his value is \hat{v}

\therefore my bid $b \geq \frac{\sqrt{v}}{2}$

$$\therefore \max_{0 \leq b \leq v} \left\{ (v - b) \cdot P \left[\hat{v} \leq \frac{b}{2} \right] \right\}$$

$$= \max_{0 \leq b \leq v} \left\{ (v - b) \cdot P \left[\frac{\hat{v}}{2} \leq \frac{b}{2} \right] \right\}$$

$$= \max_{0 \leq b \leq v} \left\{ (v - b) \left(\frac{b}{2} \right) \right\}$$

$$\Rightarrow b^* = \frac{v}{2}$$

26 Cournot Example: “Quantity Example”

(Simultaneous move game)

Firm i : q_i, c_i

Firm j : q_j $\begin{cases} C_{jH} & \text{prob. } p \\ C_{jL} & (1 - p) \end{cases}$

(unit) selling price = $a - q_i - q_j$

(section 3.1 — Gibbons book)

27 Double Auction

1 buyer — wants to buy a house (indicated by \uparrow)

1 seller — wants to sell house (indicated by \downarrow)

iid $\cup[0, 1]$ valuations.

$$v_b = 0.63 \quad v_s = 0.49$$

So buyer/seller can come to an agreement that makes both happy, but not observable.

What is the efficient outcome?

$$\begin{cases} \text{sale} & \text{if } b > s \\ \text{not sale} & b < s \end{cases}$$

27.1 Revelation Principle

Particular equilibrium of some game.

There is another game in which type space = action space.

27.1.1 Double Auction

Truthful direct mechanism: (v_b, v_s)

- Buyer & seller submit sealed bids (b) (s)

* If $(b - s) > \frac{1}{4}$, then trade occurs at

$$p = \frac{1}{3}(b + s) + \frac{1}{6}$$

(average of value + constant)

Otherwise no trade.

27.2 Environments Where Lack of Transparency Causes Problems

27.2.1 “Winner’s Curse”

2 players, 1 obj

buyer seller

Object would be good, mediocre, bad (G) (M) (B)

Seller knows quality.

Buyer (B) believes quality to be $G \mid M \mid B$

Common knowledge:

$$v_s(G) = 30 \quad v_B(G) = 34$$

$$v_s(M) = 20 \quad v_B(M) = 24$$

$$v_s(B) = 10 \quad v_B(B) = 14$$

You'd only really pay \$10 to start \leftarrow to know quality of object.

Buyer names a price Seller accepts/rejects } market for lemons

28 Bayesian Auctions

29 October 2025

28.1 Private Value Auctions

28.1.1 (1) Second Price Auctions — Vickrey “truthful mechanism”

- Submit sealed bids
- Highest bid wins — but money charged is second highest bid

\therefore it is a dominant strategy to bid your value.

Bidder 1: value x , cost c highest competing bid

Bid $b > x$: Payoffs

$$\begin{cases} x - c & \text{if } c < x \\ 0 & \text{otherwise} \end{cases}$$

Bid $b < x$: Payoffs:

$$\begin{cases} x - c & c < b \\ 0 & b < c < x \\ 0 & c > x \end{cases}$$

Note: Money left on the table when $b < c < x$.

Bid $b > x$: Payoffs =

$$\begin{cases} x - c & c < x \\ x - c & x < c < b \\ 0 & c > b \end{cases}$$

(so when $x < c < b$)

28.1.2 Which Format is Better for the Seller — First or Second Price Auctions?

Linearity of expectation:

$$R = x_1 + x_2$$

$$E[R] = E[x_1] + E[x_2]$$

2 bidders first price auction: $b_1 = x_1/2, b_2 = x_2/2$

density: $\int_0^1 \frac{x_1}{2}(1-x_1) (1-x_1)$ (uniform dist)

$$= \frac{x_1^3}{3} \Big|_0^1 = \frac{1}{6}$$

On average, seller collects $\frac{1}{6}$ from bids.

$$\therefore E(R_1) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

28.2 Second Price Auction

Values x_1, x_2

Prob(bidder 1 wins with value x) = x

$$E[\text{bidder 2} \mid \text{bidder 1 wins with value} (= b_2) = x] = \frac{x}{2}$$

What player has to pay:

$$E(\text{payment}) = E(\text{bid of player}_2)$$

What player 1 has to pay is b_2 , which is uniformly distributed between 0 & x :

$$\therefore E(\text{bid}_2) = \frac{x}{2}$$

$$\therefore \text{again } E[R] = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

28.3 Expected Payments

28.3.1 First Price:

$$= \text{Prob}(x_1 > x_2) \cdot E[R^1(x_1)]$$

$$= x_1 \cdot \frac{1}{2} x_1$$

28.3.2 Second Price:

$$= \text{Prob}(x_1 > x_2) \cdot E[R(x_2 \mid x_1 > x_2)]$$

$$= x_1 \cdot \frac{1}{2} x_1$$

28.4 Generalizations

N bidders

Values x_1, \dots, x_n iid F on $[0, \omega]$

28.4.1 Expected Payment

$$m_i(x_i) = \text{Prob}(x_i > \max_{j \neq i} x_j)$$

$$E \left[\max_{j \neq i} x_j \mid x_i > \max_{j \neq i} x_j \right]$$

Distribution of $y_i = \max_{j \neq i} x_j$