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Static Games with Complete Information

10 September 2025

• n players.

• Player i has action set Ai.

• Payoff: ui : A1 ×A2 × . . .×An → R

• ui(a1, a2, . . . , ai, . . . , an) is the payoff to player i for choosing ai.

• Actions are common knowledge.

• One-shot game.

• Each player picks an action ”simultaneously” (without knowing others’ choices).

L R

U 9, 9 0, 10
D 10, 0 4, 1

• Row player can choose U or D.

• Column player can choose L or R.

Dominant Strategies

The ”best” choice never depends on what the other person does.

• Row player should pick D anyways.

• Column player should pick R anyways.

• We assume players are rational.

• Expected outcome: (9, 4)

• This is the ”Prisoner’s Dilemma.”
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• If they interact: Row → U , Column → L.

For strategies:

(s1, s2, . . . , si, . . . , sn), si is the strategy for player i.

s∗i is a dominant strategy for player i if:

ui(s1, s2, . . . , s
∗
i , . . . , sn) > ui(s1, s2, . . . , si, . . . , sn)

for all s1 ∈ A1, s2 ∈ A2, . . ..

Dominant Strategy Equilibrium

If a game is such that each player i has a dominant strategy s∗i , then the game has a dominant
strategy equilibrium (s∗1, s

∗
2, . . . , s

∗
n).

Dominance Solvable

s̃ is a ”dominated” strategy for player i if there is another strategy s̃i such that:

ui(s1, s2, . . . , s̃i, . . . , sn) < ui(s1, s2, . . . , si, . . . , sn)

Static games

15 September 2025
Read: Game theory in supply chain analysis (survey paper). (Cachon & Netessine)

Definitions

Game

• A game is defined with n players (n ≥ 2).

• Set of actions available to i: A1, A2, . . . , An.

• Strategy space of i: S1, S2, . . . , Sn.

• Payoff function: u1, u2, . . . , un.

ui : S1 × S2 × · · · × Sn → R

ui(s1, s2, . . . , si, . . . , sn) = Payoff to i when players choose s1, s2, . . .

• Depends on (s1, s2, . . . , sn), not just on si.

• Could be different for different players.
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Dominant Strategy

si is a dominant strategy if:

ui(ti, . . . , si, . . . , tn) > ui(ti, . . . , s
′
i, . . . , tn)

∀t1 ∈ S1, t2 ∈ S2, . . . , tn ∈ Sn where si ̸= s′i

Strictly Dominated Strategy

Let ti ∈ Si, si ∈ Si.

ti is strictly dominated by si if:

ui(si, s−i) ≥ ui(ti, s−i) ∀s−i ∈ S−i

• A strictly dominated strategy may not exist.

• A rational player will never play a strictly dominated strategy.

C M H

L 6/6 2/8 0/5
M 8/2 4/1 1/3
H 4/10 3/1 2/2

For row players, L is dominated.
For column players, C is dominated.

∴ Game is effectively

M H

M 4/1 1/3
H 3/1 2/1

Rationalizability and Beliefs

Belief of player i ≡ some random B−i ⊆ S−i.

Si : Player’s best response to B−i.

(ui(si, B−i) ≥ ui(s
′
i, B−i) ∀s′i ∈ Si)

(s1, s2, . . . , sn) is rationalizable if si is a best response to some B−i for each player i.

• Belief of i about j can be different from belief of k about j.

• Rationalizability allows for that.
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Examples

Example 1:
D C

D −1/− 1 9/0
C 0/9 −1/− 2

• C is dominant strategy for each player.

• D is dominated.

• (C,C) can be rationalized as N.E.

Example 2:
O F

O 2/1 0/0
F 0/0 1/2

• No dominant/dominated strategy.

• N.E. = (0, 0) (pure strategies)

• Rationalizable strategies: all rationalizable (O,F ), (F,O), etc.

Example 3:
L R

U 8/8 5/9
D 9/5 6/6

• D is dominant.

• U is dominated.

• R is dominant.

• L is dominated.

Example 4:
L M

V 1/0 1/2
H 0/3 2/0

• R is dominated.

• Only N.E. rationalizable.

• V is dominating, M is dominating.

More Games

17 September 2025

1 Cournot Competition

17 September 2025
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1.1 Setup

• 2 firms: i and j (quantity competition)

• Marginal production cost = c (cost to produce 1 item)

• Firms choose quantities qi and qj simultaneously

• Unit price = a− (qi + qj)

Question: What are equilibrium quantities chosen by the firms?

(In game theory context)

• Number of players = 2 (i and j)

• Strategy space:

Firm i : [0,∞) (1)

Firm j : [0,∞) (2)

Payoff for firm i: (Revenue - cost = Profit)

Ui(qi, qj) = qi · (unit price−marginal cost) (3)

= qi(a− qi − qj − c) (4)

∴ Ui(qi, qj) = qi(a− qi − qj − c) (5)

1.2 Finding Nash Equilibrium

(q∗i , q
∗
j ) are Nash Equilibrium if:

Ui(q
∗
i , q

∗
j ) ≥ Ui(qi, q

∗
j ) ∀q∗i ̸= qi (6)

Ui(q
∗
i , q

∗
j ) ≥ Ui(q

∗
i , qj) ∀q∗j = qj (7)

Suppose firm j produces q̂j . Then q∗i is the optimal reaction of firm i:

max
qi

(qi(a− qi − q̂j − c)) (8)

where q̂j is a known fixed number (essentially a constant).

π(qi) = qi(a− qi − q̂j − c) (9)

π′(qi) = (a− qi − q̂j − c) + qi(−1) = 0 (10)

a− qi − q̂j − c− qi = 0 (11)

∴ q∗i =
a− q̂j − c

2
(12)

Since π′′(qi) = −2 < 0⇒ q∗i is a max.

If you plot a profit function:
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q∗i

Profit

Similarly, q∗j =
a−q∗i −c

2

For both firms to get equilibrium:

q∗i =
a− q∗j − c

2
(13)

q∗j =
a− q∗i − c

2
(14)

Solving:

∴ q∗i = q∗j =
a− c

3
(15)

If both firms were owned by the same entity:

max
qi,qj
{qi(a− qi − qj − c) + qj(a− qi − qj − c)} (16)

= max
qi,qj
{(qi + qj)(a− c− (qi + qj))} (17)

Consider qi + qj = q:

max
q
{q(a− c− q)} (18)

In that case:

qopti + qoptj =
a− c

2
(19)

∴ qopti = qoptj =
1

4
(a− c) (20)

(Like prisoner’s dilemma)

Even though 1
4(a− c) is better, if qi plays that, j will play q∗j =

(
a−c
2

)
− 1

2

(
a−c
4

)
∴ they will both end up playing sub-optimally, i.e., (a−c)

3

1.3 Why will qj produce more?

qj produces more, even though price will go down; the volume still gives qj more profit than qi.

So when we say:

q∗i =
a− q∗j − c

2
(21)

6



So whatever i thinks j will do:

q∗i =

(
a− c

2

)
− 1

2
(q∗j ) (22)

Since qj cannot be negative (qj ≥ 0):

⇒ q∗i ≤
(
a− c

2

)
(23)

∴ i should never produce more than
(
a−c
2

)
Similarly, q∗j ≤

(
a−c
2

)
We know qopti = qoptj = 1

4(a− c)

∴ min quantity i & j can produce: 1
4(a− c)

(See full working in Tirole’s textbook)

2 Bertrand Duopoly

(”Price competition”)

2.1 Setup

• 2 firms: i and j

• Prices: Pi and Pj where a > 0, b > 0, and c is the same

Demand:

Firm i = a− Pi + bPj (24)

Firm j = a− Pj + bPi (25)

Market Size: ”a”

Production cost = c

Equilibrium prices: (P ∗
i , P

∗
j )?

Payoff for firm i: (price - cost)

πi(Pi) = (a− Pi + bPj)(Pi − c) (26)

what i thinks choice j makes

∴ P ∗
i = argmax

Pi≥c
[(a− Pi + bPj)(Pi − c)] (27)

P ∗
i =

1

2
(a+ bP ∗

j + c) (28)

P ∗
j =

1

2
(a+ bP ∗

i + c) (29)
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2.2 Solving the 2 equations

P ∗
i = P ∗

j =
a+ c

2− b
(b < 2) (30)

This is the equilibrium strategy.

3 Commons Problem

Public good: K agents (k1, k2, . . . , kn) units

Agent i can claim any amount ki

Utility for i = ln(ki) + ln
(
k −

∑
kj
3

)
log is concave ⇒ these are good models of utility function (e.g., utility of money)

Let’s try for 3 agents: (k∗1, k
∗
2, k

∗
3)

Suppose agent j uses k∗2, agent 3 uses k∗3

Then agent 1’s optimal solution:

max
k1

[ln(k1) + ln (k − k1 − k∗2 − k∗3)] (31)

Taking derivatives:

1

k1
− 1

k − k1 − k∗2 − k∗3
= 0 (32)

∴ k − k1 − k∗2 − k∗3 = k1 (33)

⇒∴ k1 =
k − k∗2 − k∗3

2
(34)

Assume all ki are identical:

∴ k∗ =
k − 2k∗

2
(35)

⇒∴ k∗ =
k

4
(36)

In general: k∗i = k
(n+1) if we maximize utility for each agent

Optimal consumption for 3 agents (as a whole) :

Let k1 + k2 + k3 = K
maxk1,k2,k3 [ln(k1) + ln(k −K) + ln(k2) + ln(k −K) + ln(k3) + ln(k −K)]

∴ k∗i = k
2n maximizes overall utility for everybody

3.1 Notes

• Each agent’s optimal problem means they give less weighting to overall consumption,
because they only care about their own utility.
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• If society wants to optimize overall welfare, there needs to be more weight on overall
consumption and less on purely private benefits.

• agents consume more than they should compared to the optimal social solution. This is
because of externalities — if part of the consumption cost is incurred by society as a whole,
an individual tends to ignore it. As a result, we over-utilize the commons, since everyone
is acting in their own self-interest without accounting for the shared damage.

• To regulate that, we can introduce tolls, penalties, or corrective taxes (Pigouvian taxes).
These policies work by making private agents “internalize” the externality, i.e. aligning
private incentives with the social optimum.

4 Final Offer Arbitration

27 September 2025

4.1 Setup

• Union ∼ arbitrator

• Firms

• Firm arguing over wages; wise arbitrator

Game:

• Firm proposes a wage offer wF simultaneously

• Union chooses a wage after wU

Arbitrator has an ideal settlement:

• Required to choose wF or wU

Arbitrator commits to choosing after doesn’t in x.

From the union, believe x is a randomly distributed with distribution F (x).

Example: F (x)

wages
$18 $33

wF
x

wU

Then wF is chosen (x is closer to wF )

4.2 Equilibrium Analysis

What do the firm & union do in equilibrium?

Analysis: Suppose union picks wU , firm picks wF
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P (wU is chosen) = P

(
x >

wU + wF

2

)
= 1− F

(
wU + wF

2

)
(37)

P (wF is chosen) = P

(
x <

wU + wF

2

)
= F

(
wU + wF

2

)
(38)

∴ Expected wage agreement is: G(wU , wF )

= wF · F
(
wU + wF

2

)
+ wU ·

(
1− F

(
wU + wF

2

))
(39)

If (w∗
U , w

∗
F ) is NE (Nash equilibrium), then:

w∗
F should minimize G(w∗

U , wF ) over all wF

w∗
U should maximize G(wU , w

∗
F ) over all wU

∴ wF should solve:

min
wF

{
wF · F

(
wF + w∗

U

2

)
+ wU ·

(
1− F

(
wF + w∗

U

2

))}
(40)

Similarly:

max
wU

{
w∗
F · F

(
w∗
F + wU

2

)
+ wU ·

(
1− F

(
w∗
F + wU

2

))}
(41)

First order conditions:

At wF = w∗
F :

0 =
1

2
· wF · F ′

(
wF + w∗

U

2

)
+ F

(
wF + w∗

U

2

)
− wU ·

1

2
· F ′

(
wF + w∗

U

2

)
(42)

At wU = w∗
U :

0 = wF · F ′
(
wF + w∗

U

2

)
· 1
2
− 1 +

(
1− F

(
wF + w∗

U

2

)
− wU ·

f(w∗
F + wU )

2

)
(43)

Equating both:

1

2
(w∗

U − w∗
F ) · F ′

(
w∗
U + w∗

F

2

)
= F

(
w∗
F + w∗

U

2

)
(44)

⇒ F

(
w∗
F + w∗

U

2

)
=

1

2
(45)

At equilibrium, the avg of their choices would be at the median of the observations.

P (wF ) = P (wU ) =
1

2
(46)
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∴ w∗
U − w∗

F =
1

F ′
(
w∗

F+w∗
U

2

) (47)

(density fn.)

Example: F (x) is normally distributed ∼ N(m,σ2)

∴
w∗
U − w∗

F

2
=

1

f(m)
=
√
2πσ (48)

w∗
U + w∗

F

2
= m (for normal distribution, mean = median = m) (49)

Thus:

w∗
F = m−

(√
π

2

)
σ (50)

w∗
U = m+

(√
π

2

)
σ (51)

⇒ ”gap” increased with uncertainty.

⇒ If they don’t know what the arbitrator picks, firm & union tend to choose close to end points

5 Bertrand Competition (Variation)

2 firms: i & j, unit production cost = c

Prices: Pi, Pj

π(Pi, Pj) =


(a− Pi) · (Pi − c) Pi < Pj

0 (a− Pi) · (Pi − c)

Pi > Pj
(a−Pi)

2 · (Pi − c) Pi = Pj

(52)

Note: Pi > c can never be supported as a NE

⇒ P ∗
i = P ∗

j = c is the unique NE

5.1 Discrete Model

Suppose Ps are required to be in the set {c, c+ ε, c+ 2ε, c+ 3ε, . . .}

”ε” = increment

What are the Nash equilibria in this model?

(c, c) is a NE

(c+ ε, c+ ε) is also a NE

(Though one firm can undercut to c, they reduce their profit to 0.)
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6 Mixed Strategies (Nash Equilibria)

Exercise: Find a mixed strategy equilibrium

U D

Alice 0,0 0,-1

Bob 0,-10 -90,-6

Suppose Alice plays U with prob. (p), D with prob. (1− p)

Bob plays L with prob. q, R with prob. (1− q)

What is Bob’s best response?

If Bob picks L, expected payoff:

p(0) + (1− p)(−10) = 10p− 10 (53)

Bob picks R, expected payoff:

p(−1) + (1− p)(−6) = 5p− 6 (54)

⇒ Bob’s best response

10p− 10 > 5p− 6 (55)

5p > 4 (56)

p >
4

5
(57)

Best response =


L if p > 4/5

R if p < 4/5

{L,R} if p = 4/5

Suppose Bob plays L with prob. q, R with prob. (1− q)

Alice’s best response:

If Alice plays U expected payoff:

q(0) + (1− q)(0) = 0 (58)

If Alice plays D expected payoff:

q(10) + (1− q)(−90) = 100q + 90 (59)

Alice’s best response:


U if q < 9/10

D if q > 9/10

{U,D} if q = 9/10

(60)
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O F

O 2,1 0,0

F 0,0 1,2

(0, 0) (F, F) are pure strategy NE

Suppose Alice plays O with prob. (p), F with prob. (1− p)

Bob’s best response:

If bob plays O = p(1) + (1− p)(0) = p

F = p(0) + (1− p)2 = 2− 2p (61)

p > 2/3 (62)

p < 2/3 (63)

Bob’s best response =


O if p > 2/3

F if p < 2/3

{O,F} if p = 2/3

Suppose Bob plays O with prob. q, F with prob. (1− q)

If Alice picks O = q(2) + (1− q)(0) = 2q

F = q(0) + (1− q)1 = 1− q (64)

2q > 1− q (65)

q >
1

3
(66)

Alice’s best response =


O if q > 1/3

F if q < 1/3

{O,F} if q = 1/3

∴ p = 2
3 , q = 1

3 is N.E ← mixed strategy Nash equilibria

p = 1, q = 1 is N.E

p = 0, q = 0 is N.E

7 Two-Person Zero Sum Games

aij =

{
Payoff to Alice (from Bob) if

Alice plays strategy i & Bob = j
(67)
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Bob
y1, y2 . . . . . . yn

Alice

x1
x2 aij
...

xm

(aij − aij) zero sum

Alice’s x∗i = (x∗1, x
∗
2, . . . , x

∗
m) are NE if & only if:

Bob’s y∗j = (y∗1, y
∗
2, . . . , y

∗
n) are NE if & only if

U(x, y) =

m∑
i=1

n∑
j=1

aijy
∗
j (68)

∴ x∗ & y∗ are NE if & only if:

[box= ] align U(x, y∗) ≤ U(x∗, y∗) ≤ U(x∗, y)

7.1 Alternative Approach

Fix Bob: (y∗1, y
∗
2, . . . , y

∗
n)

Alice’s expected payoff for playing strategy i (Alice plays ith row):

= aiy
∗
1 + a2y

∗
2 + · · ·+ ainy

∗
n (69)

Alice’s best response = max1≤i≤m

{∑n
j=1 aijy

∗
j

}
7.2 Extended

Let V ∗ = max
{∑n

j=1 aijy
∗
j

}
If for some k,

∑n
j=1 akjy

∗
j < V ∗ then x∗k = 0

So:
∑m

i=1

(∑n
j=1 aijy

∗
j

)
x∗i =

∑m
i=1 V

∗x∗i = V ∗

Also, V ∗ =
∑m

i=1

(∑n
j=1 aijy

∗
j

)
x∗i ≤

∑m
i=1

(∑n
j=1 aijy

∗
j

)
x∗i

=
n∑

j=1

(
m∑
i=1

aijx
∗
i

)
y∗j (70)

Bob’s problem: (Bob plays jth column)

For any (x1, . . . , xm) that Alice chooses

Bob’s payoff =
∑m

i=1 aijx
∗
i
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∴ Bob’s response w = min1≤j≤n {
∑m

i=1 aijx
∗
i }

(Remember - zero sum game so if Alice = 9, Bob = -9)

7.3 Completing the Proof

∴ W ∗ =

n∑
j=1

(
m∑
i=1

aijx
∗
i

)
y∗j (71)

≥
m∑
j=1

(
m∑
i=1

aijx
∗
i

)
y∗j (72)

∴ (x∗, y∗) is a N-E if ⇒

[box= ] align U1(x, y
∗) ≤ U1(x

∗, y∗)

∀(x1, x2, . . . , xm)
s.t.

∑
xi = 1

xi ≥ 0

Bob:

U2(x
∗, y) ≤ U2(x

∗, y∗) (73)

∀(y1, . . . , yn) (74)

s.t.
∑

y∗j = 1 (75)

yj ≥ 0 (76)

−U1(x
∗, y) ≤ −U1(x

∗, y∗) (77)

⇒ U1(x
∗, y) ≥ U1(x

∗, y∗) (78)

[box= ] align ∴ U1(x, y
∗) ≤ U1(x

∗, y∗) ≤ U1(x
∗, y)

7.4 Bob’s Perspective

U1(x
∗, y∗) ≤ U1(x

∗, y) (79)

(⇒) ≤ min
y∈S2

{U1(x
∗, y∗)} (80)

≤ max
x∈S1

{
min
y∈S2

{U1(x, y)}
}

(81)

7.5 Alice’s Perspective

U1(x
∗, y∗) ≥ U1(x, y

∗) (82)

(⇒) ≥ max
x∈S1

{U1(x, y
∗)} (83)

≥ min
y∈S2

{
max
x∈S1

{U1(x, y)}
}

(84)

∴ N-E for 2 person zero sum games:

U1(x
∗, y∗) = maxx∈S1 miny∈S2 {U1(x, y)}
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7.6 Example with Payoff Matrix

Bob
q1 q2 q3

Alice
P1 5 1 1
P2 3 0 8
P3 4 4 0

Alice’s payoff:

U : 5q1 + q2 + q3 (85)

M : 3q1 + 0 + 3q3 (86)

D : 4q1 + 4q2 + 0 (87)

Min W:

W ≥ 5q1 + q2 + q3 (88)

W ≥ 3q1 + 3q3 (89)

W ≥ 4q1 + 4q2 (90)

q1 + q2 + q3 = 1 (91)

q1, q2, q3 ≥ 0 (92)

Bob’s payoff/loss:

L : 5p1 + 3p2 + 4p3 (93)

C : p1 + 4p3 (94)

R : p1 + 3p2 (95)

Bob wants to min:

min
q1,q2,q3

{max {5q1 + q2 + q3, 3q1 + 3q3, 4q1 + 4q2}} (96)

qi ≥ 0 (97)∑
qi = 1 (98)

This is equivalent to: W

Bob’s payoff/loss (zero sum):

L : 5p1 + 3p2 + 4p3 (99)

C : p1 + 4p3 (100)

R : p1 + 3p2 (101)

Bob’s optimal loss:

max
p1,p2,p3

{min {5p1 + 3p2 + 4p3, p1 + 4p3, p1 + 3p2}} (102)∑
pi = 1 (103)

pi ≥ 0 (104)
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∴ LP problem in this case:

Max V

V ≤ 5p1 + 3p2 + 4p3 (105)

V ≤ p1 + 4p3 (106)

V ≤ p1 + 3p2 (107)

8 Sequential Games / Extensive Form Games

6 October 2025

8.1 Games that unfold over time

8.1.1 Ingredients:

1. Set of players N

2. Payoff function for each players - payoff depends on outcomes & outcomes depend on
actions of all players

3. Sequence in which players move

4. Available actions when it is a players turn to move

5. Knowledge of a player when it’s their turn to move

6. Moves by Nature (= Prob. over exogenous events)

9 Sequential Games / Extensive Form Games

Sequential games are games that unfold over time.

9.1 Key Ingredients

1. Set of players N

2. Payoff πi for each player i

• Payoff depends on outcomes; outcomes depend on actions of all players

3. Sequence in which players move

4. Available actions when it is a player’s turn to move

5. Knowledge of a player when it’s their turn to move

6. Moves by nature (probability over exogenous events)

9.2 Game Trees

Game trees are analogous to decision trees for single-player problems.
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9.2.1 Example: Sequential Battle of the Sexes

1

O

0

O

F

F

F

O

O

F

2 0

Note: In this example, player 1 moves first, choosing between O (Opera) and F (Football).
Player 2 then observes player 1’s choice and responds accordingly.

9.3 Information Sets

Information Set for player i: A partition of the nodes of player i such that player i cannot
distinguish nodes within an information set.

Note: One cannot distinguish nodes within an information set.

If nodes x and x′ are in the same information set for player i, then their available actions are
the same at these nodes.

1

O 2

F

F

F

F

Information set

10 Example Games

10.1 Game with Information Sets

L

R

1

A

Information sets for:

• Player 1: {A}

• Player 2: {B} (assumed from context)
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• Player 3: ϕ (Dummy player)

• Player 4: {D}, {E}

Terminal nodes: {C,F,G,H, I}

With terminal node payoffs shown in boxes at the leaves.

10.2 Deck of Cards Game

Game Description:

1. Deck of cards: Player 1 pulls out a card but does not look at it.

2. After drawing, player 1 chooses to either:

• Call (C), or

• Fold (F)

3. Outcomes:

[label=(c)]

(a) If he folds, he pays $1 to player 2

(b) If he calls, he pays $2 to player 2 if the card drawn is black

(c) If he calls, he receives $2 from player 2 if the card drawn is red

10.2.1 Game Tree

Nature

Red

+2

Call

−2

Fold

p = 1/2

Black

−1

Fold

+2

Call

p = 1/2

Note: Technically only 2 strategies for player 1 (they don’t know if card is R/B; they can only
C/F). Player 2 is a dummy player.

10.3 Same Game with Different Structure

Alternative representation where player 1 cannot observe nature’s move:
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1

N

Red

+2 −2

Calls

Black

−2 +1

Folds

N

N

Red Black

11 Solution Concepts

11.1 Pure Strategy

A pure strategy is a complete plan of what player i would do, i.e., pick an action.

Formally: Si : Hi → Ai

As each hi ∈ Hi, pick an action from Ai(hi).

12 Extensive Form Games

13 October 2025

12.1 Properties

1. 1 has 6 descendants: 2, 3, ...

2. 2 has 4 strategies

3. Player assignments at different nodes

12.2 Centipede Game (
1, 1
)

(
0, 3
) C (

2, 2
)

(
1, 4
) E (

3, 3
)

(
2, 5
) E (

4, 4
)C

C

C

Where C = Continue, E = End

Note: $ keeps increasing.
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Backward induction is very robust here because the game should theoretically end at the
first step, but if it would remain at 2...

13 Example: Two Countries Game

Countries ”1” and ”2” game example:

1

Escalate

2

Kneel-off B

2

Ignore

+10 −0

Simultaneous move game:

γ d

R−5,−5 −100,−100

−5,−5 −100,−100

D

Everybody loses.

13.1 Equivalent Normal Form Game

If they get to node 1, then E → 2N , which is a Nash Equilibrium (NE).

γ d

R −5,−5 −100,−100
D −100,−100 −100,−100

(R, γ) is NE

(D, d) is NE

14 Subgame Perfect Nash Equilibrium

14.1 Definition

Subgame perfect NE: A Nash equilibrium where the strategy profile induces a Nash equilib-
rium in every subgame.

I want to have equilibria that are credible — not just the original game, but from any game
from a subtree.
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14.2 Example Analysis

Nk Nd Bk Bd

IR 0,0 0,0 0,0 0,0

ID 0,0 0,0 0,0 0,0

ER −5,−5 −100,−100 −10,−10 −10,−10
ED −100,−100 −100,−100 −10,−10 −10,−10

Where:

• I = Ignore

• E = Escalate

• R = Retaliate

• D = Don’t retaliate

• N = Negotiation

• k = kneel

• B = Bomb

14.3 Additional Analysis

1

2 E

Thru I

2

I

0

N

−10

Notes:

• 2 picks N (choosing N based on payoffs)

• 1 picks I (ignoring based on backward induction)

15 Cournot Game

15.1 Setup

2 firms - each firm produces production cost c.

1. Firm 1 picks q1

2. Firm 2 observes q1 and picks q2

Price in market: a− q1 − q2

Equilibrium strategies for both firms?
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Recall: In simultaneous games, q∗1 = q∗2 = a−c
3

15.2 Analysis

Suppose firm 1 picks q1 ∼ — what is the optimal choice of firm 2?

Firm 2’s problem: maxq2 {q2(a− q1 − q2 − c)}

This is the “profit”

q∗2 =
a− c− q1

2

Strategy of firm 2: q∗2 = f(q1) =
a−c−q1

2

Note: Strategy of firm 2 is a function that maps firm 1’s action (a number, real) to an action.

15.3 Finding Firm 1’s Optimal Choice

Firm 1 knows 2 is rational and will choose
(a−c−q1

2

)
.

∴ It’s optimal choice is:

max
q1

{
q1

(
a− c− q1 −

a− c− q1
2

)}

= maxq2
{
a1
(
a− c− q1 − a−c−q1

2

)}
∴ q∗1 =

a− c

2

∴ q∗2 =
a− c

2
− a− c

2
=

a− c

4

q∗1,2 =
a− c

4

15.4 Equilibrium Strategies

q∗1 =
a− c

2

f2(q1) =

{
a−c−q1

2 q1 ≤ a− c

0 q1 > a− c

16 Example: Two-Stage Game

16.1 Stage 1 (t = 1)

m f
M 4, 4 −1, 5
F 5,−1 1, 1
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16.2 Stage 2 (t = 2)

ℓ g
L 0, 0 −4,−1
G −1, 4 −3,−3

16.3 Question

Can we support (M,m) as part of an equilibrium outcome?

16.4 “Carrot and Stick Approach”

If (M,m) is played in stage 1 (t = 1), pick (L, ℓ) otherwise pick (G, g).

(Penalize players from deviating)

Strategies: Player 1 plays M

If player 2 picks m and then ℓ, ∴ payoff = 4 + 0 = 4

If player 2 picks f and then g, ∴ player 1 plays G, ∴ payoff = 5 + (−3) = 2

Note: This would not be an outcome if this was a single stage.

16.5 Transformed Game Matrix

16.5.1 At t = 1

m f
M 4, 4 −1, 5
F 5,−1 1, 1

16.5.2 At t = 2

ℓ g
L 4, 4 −1, 5
G 5,−1 (1, 1) ✓ NE

So in essence the game becomes:

m f
M 5, 5 0, 6
F 6, 0 (2, 2)

F dominates M ∴ (2, 2) is the Nash equilibrium.

(Penalty for deviating) does not work because there is a unique equilibrium.

We don’t possess a “tool” to penalize the other player with.

17 Summary

1. If you pick a NE of each stage game in isolation

→ can be supported as a subgame perfect NE

2. “Carrot & stick game” —

24



Non equilibrium outcomes can be supported as a subgame perfect equilibrium outcome in
multistage games for a large enough discount factor.

18 Repeated Games

20 October 2025 ∗ stage game — repeated t = 1, 2, . . . , T (T can be ∞)

Stage game could be a normal form game.

Players utility: u1, u2, . . .

sum:
∑

vt (could be infinite)

Discounting: discount factor δt

reward =
∞∑∞

t=1 δ
t−1vt

0 ≤ δ ≤ 1

Interpretation:

• Earlier rewards are worth more than later rewards

• (1− δt) = probability of terminating at each stage

18.1 Equilibria in Infinitely Repeated Games

Pure strategy: A choice of action at each decision point

19 Example: Infinitely Repeated Prisoner’s Dilemma

m f
M 4, 4 −1, 5
F 5,−1 1, 1

Possible strategies:

1. Play F every stage

2. Play F at odd t, M at even t

3. Play M initially, if the other player plays F then plays F otherwise M.

4. Play M initially, if the other player ever plays F, then pick F forever (otherwise M)

↑ Grim / Trigger strategy

(once you lose trust it’s lost forever)

20 “Conditional” Strategies

Use strategies in later stage games to support good behavior in earlier stage games.
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20.1 Payoffs

Payoffs: v1, v2, . . . , vT , . . .

Discounted payoff:
∑∞

t=1 δ
t−1vt = ·V

“net present value of payoff”

The average payoff of [v1, v2, . . . , vT , . . .]

= [v, v, . . . , v, . . .]

Earning v in each step gives a total discounted payoff:

V =

( ∞∑
t=1

δt−1v

)
=

v

1− δ

So, ∴ v = V · (1− δ)

21 Repeated Prisoner’s Dilemma Analysis

m f
M 4, 4 −1, 5
F 5,−1 1, 1

Can (M,m) be sustained as an equilibrium in an infinitely repeated game?

21.1 “Carrot & Stick” Theory (Grim Trigger)

Row Player:

Stick: Play F following any outcome other than (M,m) at every earlier stage.

Carrot: If entire past history = {(M,m), (M,m) . . .}, then play M.

21.1.1 Column Player’s Response

They play f ∴ following grim trigger

5 +
1 + 1 + . . .

t = 0
=

5 + δ1

1− δ

They play M:

∴ 4 +
4δ + 4δ2 + . . .

1
=

4

1− δ

21.2 Condition for Cooperation

4

1− δ
>

5 + δ1

1− δ
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∴ 4 > 5− 4δ

4δ > 1

δ >
−1
4

As long as δ ≥ 1
4 , the additional dollar you get by playing f does not equate to losing $3 every

stage thereafter.

∴ if δ > 1
4 , then playing M is optimal.

Same for row player’s side (by symmetry).

∴ this is subgame perfect NE as long as δ > 1
4 .

22 Bargaining Games

22 October 2025

22.1 Folk Theorem

22.1.1 I. Ultimatum Game — 2 players split a dollar

Player 1 offers split (s, 1− s)

Player 2 accepts/rejects

S1 = [(s, 1− s) | 0 ≤ s ≤ 1]

S2 =

{
Accept all offers above x

reject all offers below x

Possible strategies:

⇒ 1: offers (x∗, 1− x∗)

2:

{
accepts all offers 1− x∗ and above

rejects all below 1− x∗

Assumption: In case of tie, players accept rather than reject.

27



22.1.2 Game Tree Representation

1

2

(s, 1− s)

accept

(0, 0)

reject

s

2

(1− s, s) (0, 0)

1− s

Conditions:

• s ≥ 0.99

• 1− s ≥ 0.01

22.1.3 II. Bargaining Game (everything is common knowledge)

Stage 1: Player 1 offers a split (s1, 1− s1)

Player 2 accepts | rejects

• s1 — game proceeds to

• 1− s1 — stage 2

Stage 2: Player 2 offers (s2, 1− s2)

Player 1 accepts | rejects

• s2 — game proceeds to

• 1− s2 — stage 3

Stage 3: Player 1 offers split (s3, 1− s3)

Player 2 accepts or rejects

{
s3

1− s3

[
ŝ

1− ŝ

]

ŝ = some option (fixed), known to all from day 1

22.2 Optimal Offer Analysis

Optimal offer of player 1 on day 3 is s3 = ŝ

ζ then player 2 should offer s2 ≤ ŝ, but player 1 would reject s2 < ŝ.

ζ player 1 should offer s1 ≥ ŝ.
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(This is all assuming value of money stays constant)

22.2.1 Impose Time Value of Money (discount factor δ)

Day 3: same choice ŝ

Day 2: player 2 should offer s2 = δ∗ŝ

1− s2 = (1− δŝ)

∴ player 1 would accept any offer that gives them at least δŝ.

Day 1: player 1 should offer

If s1 is such that 1− s1 ≤ δ(1− δŝ), then player 2 rejects.

Otherwise player 2 accepts. ∴ optimal offer:

s1 ≤ 1− δ(1− δŝ)

22.3 Extended Game Tree

∴ s∗1 = 1− δ + δ2ŝ

If player 1 chooses s1 > s∗1, the player 2 rejects

and at day 2, player 1 gets δ2ŝ

and δ2ŝ < 1− δ + δ2ŝ

1

2

(s1, 1− s1)

A

R

2

(s2, . . .) (1− s2)

A

R

(s3, 1− s3)ŝ, 1− ŝ

← outside offer

22.4 Summary of Bargaining Game Results

Player 1 gets: 1− δ + δ2ŝ

Player 2 gets: δ − δ2ŝ
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∴ player 1 does better if δ close to 1 (e.g., δ = 0.95)

∴ 1− δ + δ2ŝ
?
> δ − δ2ŝ

1− δ + δ2

2
>

δ − δ2

2

ŝ =
1

2

ŝ = 1

1− δ + δ2 > δ − δ2

23 Folk Theorem

Let G be a game of complete info. Let (v∗1, v
∗
2, . . . , v

∗
n) be the payoffs from a NE of G.

Feasible payoff: Convex hull of payoffs.

m f
M (4, 4) (−1, 5)
F (5,−1) (1, 1)

NE: (1, 1)

[Diagram shows feasible payoff region (4, 4) to (5,−1) to (1, 1) with shaded convex hull]

(v1, . . . , vn) can be achieved as the average payoff in a subgame perfect NE for δ large enough if
⇒ (v1, . . . , vn) is feasible.

ℓ : vi → vi

24 Bayesian Games

27 October 2025 n players

Strategy spaces: si, . . . , Sn

For player i:

i’s payoff = ui(s1, . . . , sn)

Now — many types of player i:

ui(s1, . . . , sn; t) = payoff for player i of type t, when the players use s1, . . . , sn resp.

Ti = type space for i
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ti = realized type of i

Si = strategy space for i

si = strategy chosen by i

⇒ T1, . . . , Tn — Nature draws a type for each player (t1, . . . , tn)

i informs i of their type ti:

Distribution of (t1, . . . , tn) is known

24.1 Beliefs

Based on their type, they update their beliefs:

beliefi : Pi(t−i | ti)

↓ uncertainty that i has about types of other players.

→ is game of different types of players. Based on my type I have some beliefs of other types.

Pi(t−i | ti) =
P (t−i, ti)

P (ti)
=

P (t−i, ti)∑
t′i∈Ti

P (t−i, t′i)

24.2 Bayes Nash Equilibrium

Bayes NE:

(s∗1, s
∗
2, . . . , s

∗
n) is BNE if for ∀i, each ti ∈ Ti:

∑
ui(s

∗
1(t1), s

∗
2(t2), . . . , s

∗
i (ti), . . . , s

∗
n(tn)) · P (t−i | ti)

ti ∈ Ti

∑
ui(s

∗
1(t1), . . . , s

∗
n(tn), . . . , si(ti), . . .) · P (t−i | ti)

si(ti), . . . , sn(tn)

25 First-Price Auction

2 players, 1 object

Each player has value uniformly distributed in [0, 1]
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∴ Type of a player can be = how much they value an object.

Valuations are drawn independently.

Game: First price sealed bid for object.

Highest bid wins object, receives their bid. Other bid pays nothing and gains nothing.

Payoff: {
v − b if they value obj at v

0

Type space for bids, 1 & 2: [0, 1]

Suppose my value is v and I bid b.

Expected payoff: max0≤b≤v {(v − b) · Pi(b wins)}

25.1 Solution

Guess that player 2 bids
√
v
2 (v < 1), his value is v̂

∴ my bid b ≥
√
v
2

∴ max
0≤b≤v

{
(v − b) · P

[
v̂ ≤ b

2

]}

= max
0≤b≤v

{
(v − b) · P

[
v̂

2
≤ b

2

]}

= max
0≤b

{
(v − b)

(
b

2

)}

⇒ b∗ =
v

2

26 Cournot Example: “Quantity Example”

(Simultaneous move game)

Firm i: qi, ci

Firm j: qj

{
CjH prob. p

CjL (1− p)

(unit) selling price = a− qi − qj

(section 3.1 — Gibbons book)

27 Double Auction

1 buyer — wants to buy a house (indicated by ↑)
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1 seller — wants to sell house (indicated by ↓)

iid ∪[0, 1] valuations.

vb = 0.63 vs = 0.49

So buyer/seller can come to an agreement that makes both happy, but not observable.

What is the efficient outcome?

{
sale if b > s

not sale b < s

27.1 Revelation Principle

Particular equilibrium of some game.

There is another game in which type space = action space.

27.1.1 Double Auction

Truthful direct mechanism: (vb, vs)

• Buyer & seller submit sealed bids (b) (s)

∗ If (b− s) > 1
4 , then trade occurs at

p =
1

3
(b+ s) +

1

6

(average of value + constant)

Otherwise no trade.

27.2 Environments Where Lack of Transparency Causes Problems

27.2.1 “Winner’s Curse”

2 players, 1 obj

buyer seller

Object would be good, mediocre, bad (G) (M) (B)

Seller knows quality.

Buyer (B) believes quality to be G |M | B

Common knowledge:

vs(G) = 30 vB(G) = 34

vs(M) = 20 vB(M) = 24
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vs(B) = 10 vB(B) = 14

You’d only really pay $10 to start ← to know quality of object.

Buyer names a price Seller accepts/rejects } market for lemons

28 Bayesian Auctions

29 October 2025

28.1 Private Value Auctions

28.1.1 (1) Second Price Auctions — Vickrey “truthful mechanism”

• Submit sealed bids

• Highest bid wins — but money charged is second highest bid

∴ it is a dominant strategy to bid your value.

Bidder 1: value x, cost c highest competing bid

Bid b > x: Payoffs {
x− c if c < x

0

Bid b < x: Payoffs: 
x− c c < b

0 b < c < x

0 c > x

Note: Money left on the table when b < c < x.

Bid b > x: Payoffs = 
x− c c < x

x− c x < c < b

0 c > b

(so when x < c < b)

28.1.2 Which Format is Better for the Seller — First or Second Price Auctions?

Linearity of expectation:

R = x1 + x2

E[R] = E[x1] + E[x2]

34



2 bidders first price auction: b1 = x1/2, b2 = x2/2

density:
∫ 1
0

x1
2 (x1)(1− x1) (uniform dist)

=
x31
3

∣∣∣1
0
=

1

6

On average, seller collects 1
6 from bids.

∴ E(R1) =
1

6
+

1

6
=

1

3

28.2 Second Price Auction

Values x1, x2

Prob(bidder 1 wins with value x) = x

E[bidder 2 | bidder 1 wins with value(= b2) = x] =
x

2

What player has to pay:

E(payment) = E(bid of player2)

What player 1 has to pay is bid2, which is uniformly distributed between 0 & x:

∴ E(bid2) =
x

2

∴ again E[R] = 1
6 + 1

6 = 1
3

28.3 Expected Payments

28.3.1 First Price:

= Prob(x1 > x2) · E[R1(x1)]

= x1 ·
1

2
x1

28.3.2 Second Price:

= Prob(x1 > x2) · E[R(x2 | x1 > x2)]

= x1 ·
1

2
x1
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28.4 Generalizations

N bidders

Values x1, . . . , xn iid F on [0, ω]

28.4.1 Expected Payment

mi(xi) = Prob(xi > max
j ̸=i

xj)

E

[
max
j ̸=i

xj | xi > max
j ̸=i

]

Distribution of yi = maxj ̸=i xj
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