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Static Games with Complete Information
10 September 2025
e n players.
e Player i has action set A;.
e Payoff: u; : Ay x Ay x...x A, = R
e ui(ay,as,...,a;...,ay) is the payoff to player i for choosing a;.
e Actions are common knowledge.
e One-shot game.

e Each player picks an action ”simultaneously” (without knowing others’ choices).

| L | R
U199 0,10
D|10,0| 4,1

e Row player can choose U or D.

e Column player can choose L or R.

Dominant Strategies

The ”best” choice never depends on what the other person does.
e Row player should pick D anyways.
e Column player should pick R anyways.

e We assume players are rational.

Expected outcome: (9,4)

This is the ”Prisoner’s Dilemma.”



o If they interact: Row — U, Column — L.
For strategies:
(81,82, -+, Siy.-,Sn), si is the strategy for player i.

*

s; is a dominant strategy for player i if:

Ui (81,82, .y S5y enySn) > Ui(S1,82, -y Siye -y Sn)

for all s1 € Ay,89 € Ao, ....

Dominant Strategy Equilibrium

If a game is such that each player 7 has a dominant strategy s}, then the game has a dominant

strategy equilibrium (s, s3,...,s%).

Dominance Solvable

5 is a "dominated” strategy for player 7 if there is another strategy s; such that:

Ui (81,825« vy SiyvySn) < Ui (81,82, .y Sis-nySn)

Static games

15 September 2025
Read: Game theory in supply chain analysis (survey paper). (Cachon & Netessine)

Definitions

Game
e A game is defined with n players (n > 2).
e Set of actions available to i: Ay, As, ..., A,.
e Strategy space of i: S1,53,...,.5,.

e Payoff function: wy,us, ..., uy.

ul‘:S1><SQX--'><Sn—>R

i (81,82, ...,84,...,8,) = Payoff to i when players choose s, s9, ...
e Depends on (s1,892,...,8,), not just on s;.

e Could be different for different players.



Dominant Strategy

s; is a dominant strategy if:

ui(ti,...,ﬂ,...,tn) >Ui(ti,...,82,...,tn)

Vit € Sl,tg S SQ,.. L tn € Sn where S; 7é S;
Strictly Dominated Strategy
Let t; € S;,s; € 5.

t; is strictly dominated by s; if:

wi(si, 5—i) > ui(ti,s—5) Vs_j € S
e A strictly dominated strategy may not exist.
e A rational player will never play a strictly dominated strategy.
| C | M| H
L |6/6|2/8[0/5

M| 8/2 |4/1|1/3
H | 4/10 | 3/1 | 2/2

For row players, L is dominated.
For column players, C' is dominated.

| M | H
. Game is effectively M | 4/1|1/3
H|3/1|2/1

Rationalizability and Beliefs
Belief of player ¢ = some random B_; C S_;.

S; : Player’s best response to B_;.

(ui(si, B,l) > ui(s;, sz) Vé’; S Sl)

(s1,82,...,8n) is rationalizable if s; is a best response to some B_; for each player 1.
e Belief of 7 about j can be different from belief of k£ about j.

e Rationalizability allows for that.



Examples

Example 1:
.. b | C
D|-1/-1 9/0
C 0/9 -1/-2

e ( is dominant strategy for each player.

e D is dominated.

e (C,C) can be rationalized as N.E.
Example 2:

O | F
0O |2/1]0/0
F|10/0]1/2

e No dominant/dominated strategy.
e N.E. = (0,0) (pure strategies)

e Rationalizable strategies: all rationalizable (O, F'), (F,O), etc.

Example 3:
| L | R
U|8/815/9
D |9/5]6/6
e D is dominant.
e U is dominated.
e R is dominant.
e [ is dominated.
Example 4:
| L | M
V91/0]1/2
H|0/3|2/0

e R is dominated.
e Only N.E. rationalizable.

e V is dominating, M is dominating.

More Games

17 September 2025

1 Cournot Competition

17 September 2025



1.1 Setup
e 2 firms: ¢ and j (quantity competition)
e Marginal production cost = ¢ (cost to produce 1 item)
e Iirms choose quantities ¢; and ¢; simultaneously
e Unit price = a — (¢; + ¢;)
Question: What are equilibrium quantities chosen by the firms?
(In game theory context)
e Number of players = 2 (¢ and j)
e Strategy space:
Firm i : [0, 00)
Firm j : [0, 00)
Payoff for firm i: (Revenue - cost = Profit)

Ui(gi,qj) = ¢; - (unit price — marginal cost)
=qi(a—qi —gqj —¢)
= Uilai g5) = gila — i — g — ¢)

1.2 Finding Nash Equilibrium
(qf, q;‘) are Nash Equilibrium if:

Ui(q;q5) = Uilais ;) Va; # ai
Ui(qi,q5) > Uilai,qj) V45 =g

Suppose firm j produces ¢;. Then ¢ is the optimal reaction of firm ¢:

max (gi(a — g — g; — ¢))

where ¢; is a known fixed number (essentially a constant).

m(¢) = qila—qi —gj —¢)

(q)=(a—q —dqj—c)+q(-1)=0

a—¢—¢ —c—¢q =0
a—q;—c
'.q;k: 2‘]

Since 7”(¢;) = —2 < 0 = ¢ is a max.

If you plot a profit function:



Profit

Similarly, ¢; = aqu;‘fc

For both firms to get equilibrium:

_a-g-c
qi:T
*_a_q;k_c
C]j—72

Solving;:
a—c
L= =

If both firms were owned by the same entity:

max {¢;(a —¢; — q; — ¢) + gj(a —

qi,q;

=max{(¢; +¢j)(a—c— (g +qj))}

qi,q;

Consider ¢; + q; = ¢:

max {¢(a —c—q)}
q

In that case:

q; —

t t a—cC
pr +Q;p = 9
1
t t
" =q" = J(a—¢)

(Like prisoner’s dilemma)

Even though i(a — c) is better, if ¢; plays that, j will play ¢; = (

.. they will both end up playing sub-optimally, i.e., —(agc)

1.3 Why will ¢; produce more?

(13)

(14)

g; produces more, even though price will go down; the volume still gives ¢; more profit than g;.

So when we say:

a—q;’f—c

q;, = B

(21)



So whatever 4 thinks j will do:

Since g; cannot be negative (g; > 0):

. a—c
=q; < 9

.. ¢ should never produce more than (%)

Similarly, ¢; < (%)
opt __ opt __ 1
We know ¢;"" = ¢;"" = z(a—c¢)

. min quantity i & j can produce: (a — c)

(See full working in Tirole’s textbook)

2 Bertrand Duopoly

(" Price competition”)

2.1 Setup
e 2 firms: ¢ and j
e Prices: P; and P; where a > 0, b > 0, and c is the same

Demand:
Firm ¢ = a — P; + bP;
Firm j = a — P; + bF;
Market Size: "a”
Production cost = ¢
Equilibrium prices: (P}, P]*)7
Payoff for firm i: (price - cost)
mi(FP;) = (a— P+ bP;)(P; — ¢)

what ¢ thinks choice j makes

o P =arg max [(a — Py 4+ bP))(P; — ¢)]

1
P’ = -(a+bP} +¢)

! 2
* 1 *
P; :§(a+bPZ- +¢)

(27)



2.2 Solving the 2 equations

" " a—+c
==y

(b<2)

This is the equilibrium strategy.

3 Commons Problem
Public good: K agents (ki, ko, ..., k,) units

Agent i can claim any amount k;

Utility for i = In(k;) + In (k - 23’%')

log is concave = these are good models of utility function (e.g., utility of money)
Let’s try for 3 agents: (kj, k3, k3)

Suppose agent j uses k3, agent 3 uses k3

Then agent 1’s optimal solution:

max (k1) +In(k — k1 — k5 — k3)]
1

Taking derivatives:

L 1 —0
by k—ki—k— K

.'.k—kl—ks—kgzkl

k— k5 — k5
=k = ; 3
Assume all k; are identical:
= k —22kz*
k
= k"= 1
In general: £} = (nil) if we maximize utility for each agent

Optimal consumption for 3 agents (as a whole) :

Let k1 + ko + ks = K
MaXy, ko ks IN(k1) +1In(k — K) +In(k2) + In(k — K) + In(ks) + In(k — K)]

k= % maximizes overall utility for everybody

3.1 Notes

(30)

(31)

e Each agent’s optimal problem means they give less weighting to overall consumption,

because they only care about their own utility.



e If society wants to optimize overall welfare, there needs to be more weight on overall
consumption and less on purely private benefits.

e agents consume more than they should compared to the optimal social solution. This is
because of externalities — if part of the consumption cost is incurred by society as a whole,
an individual tends to ignore it. As a result, we over-utilize the commons, since everyone
is acting in their own self-interest without accounting for the shared damage.

e To regulate that, we can introduce tolls, penalties, or corrective taxes (Pigouvian taxes).
These policies work by making private agents “internalize” the externality, i.e. aligning
private incentives with the social optimum.

4 Final Offer Arbitration

27 September 2025

4.1 Setup
e Union ~ arbitrator
e Firms
e Firm arguing over wages; wise arbitrator
Game:
e Firm proposes a wage offer wgr simultaneously
e Union chooses a wage after wy;
Arbitrator has an ideal settlement:
e Required to choose wgr or wy
Arbitrator commits to choosing after doesn’t in x.
From the union, believe z is a randomly distributed with distribution F'(z).

Example: F(x)

wy

wages

Then wp is chosen (z is closer to wr)

4.2 Equilibrium Analysis

What do the firm & union do in equilibrium?

Analysis: Suppose union picks wy, firm picks wg



Hmﬂmﬂmmzp<x>Wf“W):1_F<wwww>

2 2
P(wg is chosen) = P (x _ wu-;wF> . <wU-2HvF>

.. Expected wage agreement is: G(wy, wp)

:wFF<W@fW>+WPO_F<WTTW)>

If (wf;,w}) is NE (Nash equilibrium), then:
w}, should minimize G(w{;, wr) over all wr
wy; should maximize G(wy, w},) over all wy

.". wr should solve:

k *
wr 2 2
* *
wy 2 2

First order conditions:

Similarly:

At wp = wi:

At wy = wy:

At equilibrium, the avg of their choices would be at the median of the observations.

Plur) = Pluy) = 5

10

(37)

(38)

(39)

(40)

(42)

(44)

(45)

(46)



(density fn.)

1
)l (w};rw*U )

Example: F(z) is normally distributed ~ N(m, o?)

* *
LWy —wp

2
Wy + wh
2

Thus:

1
 f(m)

=m (for normal distribution, mean = median = m)

=V 2mo

= "gap” increased with uncertainty.

(48)

(49)

= If they don’t know what the arbitrator picks, firm & union tend to choose close to end points

5 Bertrand Competition (Variation)

2 firms: i & 7, unit production cost = ¢

Prices: F;, P;

7T<Piﬂpj) =

(a—P)-(Pi—c) P.<P,
0 (a—PB)- (P —0)
P> P,

@-(Pi—c) P, = P

Note: P; > ¢ can never be supported as a NE

= P = P; = c¢ is the unique

5.1 Discrete Model

NE

Suppose Ps are required to be in the set {c,c+e,c¢+ 2e,¢+ 3e,...}

7e” = increment

What are the Nash equilibria in this model?

(c,c) is a NE

(c+e,c+¢)is alsoa NE

(Though one firm can undercut to ¢, they reduce their profit to 0.)

11



6 Mixed Strategies (Nash Equilibria)
Exercise: Find a mixed strategy equilibrium

U D
Alice | 0,0 | 0,1
Bob | 0,10 | -90,-6

Suppose Alice plays U with prob. (p), D with prob. (1 — p)
Bob plays L with prob. ¢, R with prob. (1 —¢q)
What is Bob’s best response?

If Bob picks L, expected payoff:

p(0) + (1 = p)(—10) = 10p — 10

Bob picks R, expected payoff:

= Bob’s best response

10p—10>5p—6

5p > 4
S 4
P=3
L if p>4/5
Best response = { R if p<4/5

{L,R} ifp=4/5
Suppose Bob plays L with prob. ¢, R with prob. (1 — q)
Alice’s best response:

If Alice plays U expected payoff:

q(0) + (1 =¢)(0) =0

If Alice plays D expected payoff:

q(10) + (1 — q)(—90) = 100g + 90

Alice’s best response:

U if ¢ < 9/10
D if ¢ >9/10
{U,D} ifq=09/10

12

(53)

(54)

(58)



(0,0) (F, F) are pure strategy NE
Suppose Alice plays O with prob. (p), F with prob. (1 —p)
Bob’s best response:

If bob plays O = p(1) + (1 —p)(0) =p

F=p0)+(1-p2=2-2p

p>2/3
p<2/3
0 ifp>2/3
Bob’s best response =  F' if p<2/3

{O,F} ifp=2/3
Suppose Bob plays O with prob. ¢, F' with prob. (1 — q)

If Alice picks O = ¢(2) + (1 — ¢)(0) = 2¢

F=q0)+(1-ql=1-¢q

2g>1—¢q
S 1
773
@) ifg>1/3
Alice’s best response = ¢ F ifg<1/3

{O,F} ifq=1/3

,q = % is N.E < mixed strategy Nash equilibria

Wl

Sop =
p=1,gq=1is N.E

p=0,q=0is N.E

7 Two-Person Zero Sum Games

Payoff to Alice (from Bob) if
Qi3 =
! Alice plays strategy i & Bob = j

13

(67)



Bob
Y1,Y2--. Yn
I
Alice | 2 i
LTm
(a;j — aij) zero sum
Alice’s o} = (27,25, ..., x},) are NE if & only if:

Bob’s y; = (y7, 93, y,) are NE if & only if

m

U(z,y) = Z Z aijy;

=1 j=1
coa* & y* are NE if & only if:
[box={] lign U(x, y*) < U(z*,y*) < U(a*,y)

7.1 Alternative Approach
Fix Bob: (v}, v5,...,y})

Alice’s expected payoff for playing strategy i (Alice plays i*" row):

= aiy] +agys + -+ dinyy,

: bl _ n k
Alice’s best response = maxj<j<m {ijl aijyj}

7.2 Extended
Let V* = max {Z?:l aijy;}

If for some &, 37, akjy; < V* then 2} =0

SO: Zgl <Z?:1 azg:g;) x;k — Z;’;l V* ;k — V*

Bob’s problem: (Bob plays j* column)
For any (z1,...,x,) that Alice chooses

Bob’s payoff = > | aijz}

14

(70)



.. Bob’s response w = minj<j<, {> 1" aj;xl}

(Remember - zero sum game so if Alice = 9, Bob = -9)

7.3 Completing the Proof

J=1

5.

Jj=1

m
(z ) .

=1

n m
z( ) .
1

AV

co(x*,y*) is a N-E if =

[boxzalign Ui (z,y*) < Up(x*,y*)

V(xl,.%‘g,...,$m)

st Y x=1

Ty Z 0

Bob:

Us(z*,y) < Ua(2™,y")

v(yla"wyn)
s.t. Zyj* =1
y; >0

[boxzalign Ui (z,y*) < Uiz, y*) < Ui(a,y)
7.4 Bob’s Perspective

Ur(z*,y*) < Ui(2",y)
(=) < min{Ui(z",y")}
yES2

< max }{ min {U; (z,
xES)f{yeSz{ 1( y)}

7.5 Alice’s Perspective

Ul(x*vy*) > Ul(x7y*)
(=) > max {Ur(z,y")}

> mi U
2 min {gggf{ 1(z, )}

.. N-E for 2 person zero sum games:
Ul (LU*, ?/*) = MaXgzes, minyGSQ {Ul (J“’ y)}

15
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7.6 Example with Payoff Matrix

Bob
q1 | 92 | 43
P |5 1 1
Alice | P, | 3| 0 | 8
Pyl 41410

Alice’s payoft:

U:5q1+q2+q3
M :3q1 + 0+ 3qg3
D :4q1 +4g2+0

Min W:

W >5q1+ ¢+ g3
W > 3q1 + 3q3
W >4q + 4q0

g1 +q2+q3=1
q1,92,q3 > 0

Bob’s payoff/loss:

L : 5p1 + 3p2 + 4ps
C :p1+4p3
R :p1 + 3p2

Bob wants to min:

Rl {max {5q1 + ¢2 + g3, 3q1 + 3¢3,4q1 + 42 }}

g >0

Z%Zl

This is equivalent to: W

Bob’s payoff/loss (zero sum):

L : 5p1 + 3p2 + 4ps
C :p1+4p3
R :p1 + 3p2

Bob’s optimal loss:

max {min {5p1 + 3p2 + 4p3, p1 + 4p3, p1 + 3p2}}
P1,p2,P3

sz‘zl

p; >0

16

(99)
(100)
(101)

(102)

(103)
(104)



.". LP problem in this case:

Max V

V < 5p1 + 3p2 + 4ps (105)
V <p1+4p3 (106)
V < p1+3p2 (107)

8 Sequential Games / Extensive Form Games
6 October 2025
8.1 Games that unfold over time
8.1.1 Ingredients:
1. Set of players N

2. Payoff function for each players - payoff depends on outcomes & outcomes depend on
actions of all players

3. Sequence in which players move
4. Available actions when it is a players turn to move
5. Knowledge of a player when it’s their turn to move

6. Moves by Nature (= Prob. over exogenous events)

9 Sequential Games / Extensive Form Games

Sequential games are games that unfold over time.

9.1 Key Ingredients
1. Set of players N
2. Payoff m; for each player @
e Payoff depends on outcomes; outcomes depend on actions of all players
3. Sequence in which players move
4. Available actions when it is a player’s turn to move
5. Knowledge of a player when it’s their turn to move
6. Moves by nature (probability over exogenous events)

9.2 Game Trees

Game trees are analogous to decision trees for single-player problems.

17



9.2.1 Example: Sequential Battle of the Sexes

VN
ATEAN
/N

Note: In this example, player 1 moves first, choosing between O (Opera) and F (Football).
Player 2 then observes player 1’s choice and responds accordingly.

9.3 Information Sets

Information Set for player i: A partition of the nodes of player ¢ such that player i cannot
distinguish nodes within an information set.

Note: One cannot distinguish nodes within an information set.

If nodes x and z’ are in the same information set for player 7, then their available actions are
the same at these nodes.

10 Example Games

10.1 Game with Information Sets

(®) A

Information sets for:
e Player 1: {A}

e Player 2: {B} (assumed from context)

18



e Player 3: ¢ (Dummy player)

e Player 4: {D},{FE}
Terminal nodes: {C,F,G,H,I}
With terminal node payoffs shown in boxes at the leaves.
10.2 Deck of Cards Game

Game Description:

1. Deck of cards: Player 1 pulls out a card but does not look at it.
2. After drawing, player 1 chooses to either:
e Call (C), or
e Fold (F)
3. Outcomes:
[label=(c)]
(a) If he folds, he pays $1 to player 2
(b) If he calls, he pays $2 to player 2 if the card drawn is black
(c) If he calls, he receives $2 from player 2 if the card drawn is red
10.2.1 Game Tree

Nature

pl// \ 1/2

Black
ca/ &m Fold/ &aﬂ
-1 +2

Note: Technically only 2 strategies for player 1 (they don’t know if card is R/B; they can only
C/F). Player 2 is a dummy player.

10.3 Same Game with Different Structure

Alternative representation where player 1 cannot observe nature’s move:

19



PN
VA

Red Black Re Black
+2 -2 +1

11 Solution Concepts

11.1 Pure Strategy

A pure strategy is a complete plan of what player ¢ would do, i.e., pick an action.
Formally: S; : H; — A;

As each h; € H;, pick an action from A;(h;).

12 Extensive Form Games

18 October 2025

12.1 Properties
1. 1 has 6 descendants: 2, 3, ...
2. 2 has 4 strategies

3. Player assignments at different nodes

12.2 Centipede Game

Where C = Continue, E = End

Note: $ keeps increasing.

20



Backward induction is very robust here because the game should theoretically end at the
first step, but if it would remain at 2...

13 Example: Two Countries Game

Countries ”1” and ”2” game example:

Ignore

2 +10 -0

Kneel-off B

Simultaneous move game:

—95Y—5 |—1004—100

R5,—5 |-100,-100

Everybody loses.

13.1 Equivalent Normal Form Game

If they get to node 1, then E — 2N, which is a Nash Equilibrium (NE).

¥ d
R -5,-5 —100, —100
D | —100,-100 | —100, —100

(R,v) is NE

(D,d) is NE

14 Subgame Perfect Nash Equilibrium

14.1 Definition

Subgame perfect NE: A Nash equilibrium where the strategy profile induces a Nash equilib-
rium in every subgame.

I want to have equilibria that are credible — not just the original game, but from any game
from a subtree.

21



14.2 Example Analysis

Nk Nd Bk Bd
IR 0,0 0,0 0,0 0,0
ID 0,0 0,0 0,0 0,0
ER —5,-5 —-100, —-100 | —10,—-10 | —10,—10
ED | —100,-100 | —100,—-100 | —10,—-10 | —10,—-10
Where:
e [ = Ignore
e E = Escalate
e R = Retaliate
e D = Don’t retaliate
e N = Negotiation
e k = kneel
e B = Bomb
14.3 Additional Analysis
1
2E I
7N\
Thru I 0 —10

Notes:

e 2 picks N (choosing N based on payoffs)

e 1 picks I (ignoring based on backward induction)

15 Cournot Game

15.1 Setup

2 firms - each firm produces production cost c.

1. Firm 1 picks ¢;

2. Firm 2 observes ¢; and picks gs

Price in market: a — q¢; — ¢

Equilibrium strategies for both firms?

22




Recall: In simultaneous games, ¢i = ¢35 = “3°

15.2 Analysis
Suppose firm 1 picks ¢ ~ — what is the optimal choice of firm 27
Firm 2’s problem: maxg, {g2(a —q¢1 —q2 — ¢)}

This is the “profit”

a—c—qi
2

Strategy of firm 2: ¢5 = f(q1) =

Note: Strategy of firm 2 is a function that maps firm 1’s action (a number, real) to an action.

15.3 Finding Firm 1’s Optimal Choice

Firm 1 knows 2 is rational and will choose (%)

.. It’s optimal choice is:

max<{qi (a—c—q — ————
q1 2

=maxg, {a1 (a —c—q — =FL)}
. a—c
a4 = 9
. _G—C a—c a—c
©= 2 4
« _a—c
q1,2_ 4
15.4 Equilibrium Strategies
« _a—c
4 = 2
a—c—qi
@ <a—c
f2(Q1):{
0 qr>a—c

16 Example: Two-Stage Game
16.1 Stage 1l (t=1)
m f

1,5
5-1] 1,1

=
:lk
S




16.2 Stage 2 (t =2)

16.3 Question

Can we support (M, m) as part of an equilibrium outcome?

16.4 “Carrot and Stick Approach”

If (M, m) is played in stage 1 (t = 1), pick (L, ¢) otherwise pick (G, g).
(Penalize players from deviating)

Strategies: Player 1 plays M

If player 2 picks m and then ¢, . payoff =4+ 0=4

If player 2 picks f and then g, .. player 1 plays G, .". payoff =5+ (—3) =2
Note: This would not be an outcome if this was a single stage.

16.5 Transformed Game Matrix
16.5.1 Att=1

m f
M [ 4,4 | 1,5
F [5,—1] I,1
16.5.2 At t=2
¢ g
L[ 44 1,5

So in essence the game becomes:

m f
M|55]| 0,6
F [6,0](22)

F dominates M .. (2,2) is the Nash equilibrium.
(Penalty for deviating) does not work because there is a unique equilibrium.

We don’t possess a “tool” to penalize the other player with.

17 Summary
1. If you pick a NE of each stage game in isolation
— can be supported as a subgame perfect NE

2. “Carrot & stick game” —

24



Non equilibrium outcomes can be supported as a subgame perfect equilibrium outcome in
multistage games for a large enough discount factor.

18 Repeated Games
20 October 2025 x stage game — repeated t = 1,2,...,T (T can be co0)
Stage game could be a normal form game.

Players utility: uq,uo,...

sum: Z vy (could be infinite)

Discounting: discount factor §°

reward:m 0§5§1

Interpretation:
e Earlier rewards are worth more than later rewards
e (1 — 4%) = probability of terminating at each stage

18.1 Equilibria in Infinitely Repeated Games

Pure strategy: A choice of action at each decision point

19 Example: Infinitely Repeated Prisoner’s Dilemma

m f
M| 4,4 | —-1,5
Fl|5-1| 1,1

Possible strategies:
1. Play F every stage
2. Play F at odd ¢, M at even ¢t
3. Play M initially, if the other player plays F then plays F otherwise M.
4. Play M initially, if the other player ever plays F, then pick F forever (otherwise M)
1 Grim / Trigger strategy

(once you lose trust it’s lost forever)

20 “Conditional” Strategies

Use strategies in later stage games to support good behavior in earlier stage games.
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20.1 Payoffs

Payoffs: vi,vo,...,vp,...
Discounted payoff: > 52, 6~ to, = -V
“net present value of payoft”

The average payoff of [vi,ve,...,vp,.. ]

Earning v in each step gives a total discounted payoff:

V= (i&*%) = 1?(5

t=1

So, . v=V-(1-90)

21 Repeated Prisoner’s Dilemma Analysis

m f
M| 4,4 | —-1,5
F |5 1] 1,1

Can (M, m) be sustained as an equilibrium in an infinitely repeated game?
21.1 “Carrot & Stick” Theory (Grim Trigger)

Row Player:

Stick: Play F following any outcome other than (M, m) at every earlier stage.
Carrot: If entire past history = {(M,m), (M, m) ...}, then play M.

21.1.1 Column Player’s Response
They play f ... following grim trigger

1+1+... 5+4!
5 =
iy 13
They play M:
45 + 402 + ... 4
.4 —
So4+ 1 T
21.2 Condition for Cooperation
4 >5+51
1-9 1-6
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S4>5—46

46 > 1

-1
5> ——
> 4

As long as § > i, the additional dollar you get by playing f does not equate to losing $3 every
stage thereafter.

Sif 6 > %, then playing M is optimal.
Same for row player’s side (by symmetry).

.. this is subgame perfect NE as long as § > %.

22 Bargaining Games
22 October 2025
22.1 Folk Theorem

22.1.1 I. Ultimatum Game — 2 players split a dollar
Player 1 offers split (s,1 — s)

Player 2 accepts/rejects

S1=1[(s,1—5)]0<s<1]

reject all offers below x

g {Accept all offers above x
2 =

Possible strategies:
= 1: offers (z*,1 — z*)

5. {accepts all offers 1 — z* and above

rejects all below 1 — z*

Assumption: In case of tie, players accept rather than reject.
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22.1.2 Game Tree Representation

Conditions:

e 5>0.99

e 1—52>0.01
22.1.3 II. Bargaining Game (everything is common knowledge)
Stage 1: Player 1 offers a split (s1,1 — s1)
Player 2 accepts | rejects

e 51 — game proceeds to

e 1 — 5 — stage 2
Stage 2: Player 2 offers (sg,1 — s2)
Player 1 accepts | rejects

e so — game proceeds to

o 1 — 359 — stage 3
Stage 3: Player 1 offers split (s3,1 — s3)

Player 2 accepts or rejects

§ = some option (fixed), known to all from day 1

22.2 Optimal Offer Analysis
Optimal offer of player 1 on day 3 is s3 = §

¢ then player 2 should offer sy < §, but player 1 would reject so < 8.

¢ player 1 should offer s; > 8.
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(This is all assuming value of money stays constant)

22.2.1 Impose Time Value of Money (discount factor 4)

Day 3: same choice §

Day 2: player 2 should offer so = 6*§

1—82:(1—5§)

*. player 1 would accept any offer that gives them at least 5.
Day 1: player 1 should offer
If 51 is such that 1 — s; < §(1 — §5), then player 2 rejects.

Otherwise player 2 accepts. .". optimal offer:

51§1—5(1—5§)

22.3 Extended Game Tree
st=1-06406%
If player 1 chooses s; > s}, the player 2 rejects
and at day 2, player 1 gets 623
and 625 < 1 — 8 + 6%5

1

S
N\

(81, 1-— S1

2

/ / \<— outside offer
)

(s2,...) (1—s2) (s3,1—s3)5,1—38

22.4 Summary of Bargaining Game Results

Player 1 gets: 1 — § + 623

Player 2 gets: § — 625
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.. player 1 does better if § close to 1 (e.g., § = 0.95)
2.7 2
1—=60+6°8>095—05%8

1—8+62 §—062

>

2 2
1
573
§=1

1—8+62>08— 42

23 Folk Theorem

Let G be a game of complete info. Let (v}, v3,...,v}) be the payoffs from a NE of G.

rvn

Feasible payoff: Convex hull of payoffs.

M| 44 | (=L
F

NE: (1,1)

[Diagram shows feasible payoff region (4,4) to (5,—1) to (1,1) with shaded convex hull]
(v1,...,vy,) can be achieved as the average payoff in a subgame perfect NE for § large enough if
= (v1,...,vy,) is feasible.

Z:vi—wui

24 Bayesian Games
27 October 2025 n players
Strategy spaces: s;,..., S,

For player :

i’s payoft = w;(s1,...,Sn)

Now — many types of player i:

u;i(S1,...,8n;t) = payoff for player i of type ¢, when the players use sy,..., s, resp.

T; = type space for ¢

30



t; = realized type of i
S; = strategy space for ¢

s; = strategy chosen by 7

= Ti,...,T, — Nature draws a type for each player (¢, ...,t,)
7 informs 7 of their type ;:
Distribution of (¢1,...,t,) is known

24.1 Beliefs
Based on their type, they update their beliefs:

belief; : Pi(t—; | t;)

J uncertainty that ¢ has about types of other players.

— is game of different types of players. Based on my type I have some beliefs of other types.

P(t_i,ti) - P(t—iati)
Plt)  Syer, Ptint)

Pi(t—; | t;) =

24.2 Bayes Nash Equilibrium
Bayes NE:

(s7,s5,...,s) is BNE if for Vi, each t; € T;:

Zui(s’{(tl),sg(m), cey Si(ti)y ooy s (tn)) - P(t—i | t;)

25 First-Price Auction
2 players, 1 object

Each player has value uniformly distributed in [0, 1]
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.. Type of a player can be = how much they value an object.

Valuations are drawn independently.

Game: First price sealed bid for object.

Highest bid wins object, receives their bid. Other bid pays nothing and gains nothing.

Payoft:

{v — b if they value obj at v
0

Type space for bids, 1 & 2: [0, 1]
Suppose my value is v and I bid b.
Expected payoff: maxg<p<, {(v —b) - P;(b wins)}

25.1 Solution

Guess that player 2 bids @ (v < 1), his value is v

. my bid b > 4

26 Cournot Example: “Quantity Example”
(Simultaneous move game)
Firm i: ¢;, ¢;

Cju prob. p

Firm j: q;
’ {Cj (1-p)

(unit) selling price = a — ¢; — ¢;

(section 3.1 — Gibbons book)

27 Double Auction

1 buyer — wants to buy a house (indicated by 1)
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1 seller — wants to sell house (indicated by )

iid U[0, 1] valuations.

vp = 0.63 vs = 0.49

So buyer/seller can come to an agreement that makes both happy, but not observable.

What is the efficient outcome?

sale ifb>s
not sale b<s

27.1 Revelation Principle

Particular equilibrium of some game.
There is another game in which type space = action space.
27.1.1 Double Auction
Truthful direct mechanism: (vp, vs)
e Buyer & seller submit sealed bids (b) (s)

 If (b — s) > 1, then trade occurs at

1 1
=—(b -
p 3( +8)+6

(average of value + constant)
Otherwise no trade.
27.2 Environments Where Lack of Transparency Causes Problems

27.2.1 “Winner’s Curse”

2 players, 1 obj

buyer seller

Object would be good, mediocre, bad (G) (M) (B)
Seller knows quality.

Buyer (B) believes quality to be G | M | B

Common knowledge:

vs(G) =30 vp(G) =34

vs(M) =20  wp(M) =24
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vs(B)=10  vp(B) =14

You’d only really pay $10 to start < to know quality of object.

Buyer names a price Seller accepts/rejects } market for lemons

28 Bayesian Auctions

29 October 2025

28.1 Private Value Auctions

28.1.1 (1) Second Price Auctions — Vickrey “truthful mechanism”
e Submit sealed bids
e Highest bid wins — but money charged is second highest bid

.. it is a dominant strategy to bid your value.

Bidder 1: value x, cost ¢ highest competing bid

Bid b > z: Payoffs

r—c ife<e
F

Bid b < z: Payofts:
rT—c c<b
0 b<c<rz
0 c>x

Note: Money left on the table when b < ¢ < x.

Bid b > z: Payoffs =
r—c c<z
r—c z<c<b
0 c>b

(so when = < ¢ < b)

28.1.2 Which Format is Better for the Seller — First or Second Price Auctions?

Linearity of expectation:

R=x14xo

E[R] = E[l’ﬂ + E[.%’Q]
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2 bidders first price auction: by = x1/2, by = 22/2

density: fol Z(x1)(1 — 21) (uniform dist)

_atp 1
3l 6
On average, seller collects % from bids.
1 1 1
ER)==4+-=-
(F) =545~ 3

28.2 Second Price Auction

Values z1, xo

Prob(bidder 1 wins with value ) = z

8

E[bidder 2 | bidder 1 wins with value(= be) = z] = B

What player has to pay:

E(payment) = F(bid of player,)

What player 1 has to pay is bidy, which is uniformly distributed between 0 & z:

~. E(bidy) = g

c.again E[R] ==z + 2 =

1
3

o=
o=

28.3 Expected Payments
28.3.1 First Price:
= Prob(z; > 29) - B[R (21)]

28.3.2 Second Price:
= Prob(z; > x2) - E[R(z2 | 21 > 2)]
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28.4 Generalizations

N bidders
Values z1,...,z, iid F on [0,w]
28.4.1 Expected Payment

m;(x;) = Prob(z; > r;lgcxj)

E |maxz; | z; > max

J#i J#i

Distribution of y; = max;; ;
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