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1 Overview

This paper develops computationally tractable methods for implementing nonparametric statistical
tests of the Random Utility Model (RUM). Building on McFadden and Richter (1991) and
Kitamura and Stoye (2018), the authors propose new optimization formulations that make testing
feasible in large-dimensional choice environments.

Key goals:

e Reformulate RUM consistency as a cone membership problem in linear algebraic form.
e Translate stochastic rationalizability into a set of linear inequalities.
e Develop efficient linear and quadratic programming algorithms.

e Apply these computational tools to empirical testing and welfare inference.

2 Random Utility Framework

2.1 Setup

Let X be a finite set of alternatives with |X| = J. An individual facing a menu A C X chooses one
element x € A. Let D denote the collection of observed menus.

For each (A, x) define the population probability

p(z, A) = Pr(z is chosen from A), with Zp(:c, A)=1.
x€A

Stacking all these probabilities yields the vector

m=(p(x,A))ra €RP, Jp = Z |Al.
AeD
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2.2 Deterministic Choice Types and Matrix A

Every deterministic type r = 1,..., R corresponds to a strict preference ordering >, on X. Given
A, this type chooses
¢r(A) = arg max u, (),
€A

the most preferred element under ,. Each type defines a deterministic choice pattern over menus:

B {1 if ¢, (A) = z,

A =
(@,A4)r 0 otherwise.

Stacking these A, 4, gives the binary matrix
A€ {0,1}/pxE
whose columns represent deterministic types and rows correspond to (A, x) pairs.
The population is described by mixing weights v = (v1,...,vg)", v >0, 1'v =1, so that
T = Av. (1)

2.3 Rationalizability

Equation implies that m must lie in the convex hull of the deterministic choice types:
C={Av:v>0,1v=1}

Thus, 7 is stochastically rationalizable <— mw € C.

Geometric interpretation. C is a closed convex cone in R/?. Each column of A is an extreme
ray corresponding to a deterministic preference ordering.

3 Testing the RUM Hypothesis

Given empirical frequencies &, we test
Hy:m€eC.

Under Hj, there exists v satisfying . Rejection implies observed choice frequencies cannot be
generated by any mixture of utility-maximizing agents.

3.1 Distance to the Cone

Define the minimum weighted squared distance of & from C:

Jo,=n min (7 — Av)Q(7 — Av), (2)

v>0,1'v=1

where € is a positive definite weighting matrix (often diagonal with inverse variance weights). This
is the test statistic of Kitamura and Stoye (2018).

If 7 € C, J, = 0; larger values indicate larger violations.



3.2 Equivalent Optimization Forms
The quadratic program in can be equivalently written as:
1
min —v/ (A'QA)w — (A'Q#r)'v st v =1.
v>0 2

KKT conditions yield

AQAv —7) + A1 — p =0, (3)
A1y —1) =0, (4)
V=0, v,u>0. (5)

4 Asymptotic Theory

Under standard regularity conditions,
\/ﬁ(ﬁ' — 7T0) —qg L~ N(O, Z),
with 3 the sampling covariance. The limit distribution of J, is

Jn —q min (Z —t)QZ —t),
tET(Tr())

where T'(m) is the tangent cone of C at my. Because T'(7y) depends on which inequalities in v > 0
bind, the limit distribution is nonstandard.

5 Modified Bootstrap

To obtain valid inference, Cherchye et al. adopt the regularized (modified) bootstrap of Kita-
mura—Stoye.

Algorithm.

(1) Generate a bootstrap sample 7* by resampling individuals.
(2) Compute the regularized projection

i = in (& — Av)Q(F — A
iy = arg_min, (5 — Av) (7 — Av),

where 7,, = y/logn/n ensures numerical stability.

(3) Recenter the bootstrap draw:

A% Ak | oa N
My =T 41y, —T.

(4) Compute
e — Av) Q7 — Av).

J*=n min (7
n VZlTn/H( Tn Tn

(5) The bootstrap p—value is the proportion of replications with J} > .J,.

This approach achieves asymptotically correct size and good finite-sample power.



6 Computational Reformulations

The paper’s main contribution is to show that the RUM testing problem can be efficiently computed
through several equivalent formulations.

6.1 Cone Projection as a Quadratic Program

Projecting 7 onto C is equivalent to solving:

i L(7 — Av)||?
Loimin |L(7 — Av)|3,

where L is the Cholesky factor of Q (2 = L’'L). This projection defines the closest stochastically
rationalizable vector = AD.

6.2 Normal Equations and Dual Problem

The first-order condition gives:
AQAv = AQr + A1 — p,

with complementary slackness. The dual program maximizes the quadratic form in the residuals
s=a— Av:

max —1/Q7 s + #'s,
secx 2

where C* = {A’Qs > 0} is the dual cone.

6.3 Linear Programming Approximation

When €2 = I, the distance to the cone simplifies to Euclidean projection:
Jn = nl|ft — Pe(7)|3-
They show that for large-scale problems, a linear programming relaxation with slack variables e,

min 1’e st. —e<#7— Av <e,
e,v>0

approximates the quadratic distance with high accuracy but lower computational cost.
6.4 Active-Set Algorithms
The authors design a customized active-set algorithm that:

e [teratively identifies binding inequality constraints in v > 0,
e Solves reduced least-squares problems on active sets,

e Updates the active set until convergence.

This dramatically speeds up projection computations.



7 Extensions

7.1 Partial Observation and Matrix Compression

When not all menus are observed, many deterministic types yield identical columns in AonD. Let
A be the matrix after merging identical columns. Then cone(A) = cone(A) on D, preserving all
theoretical results but reducing dimension.

7.2 Regularization and Numerical Stability

The lower bound v, > 7,/H avoids degenerate faces of C in the bootstrap world and guarantees
unique projections.

7.3 Welfare Bounds

Given utilities u(x), expected welfare is W = n'u = v/(A’u). To obtain welfare bounds consistent
with RUM,

W= min Ay,
v>0,1'v=1

W= max uAv.
v>0,1'v=1

These are linear programs directly implementable with the same computational tools.

8 Empirical and Numerical Performance

The authors perform simulation exercises confirming:

e The new formulations replicate Kitamura—Stoye’s results exactly.
e Runtime reductions of up to two orders of magnitude for realistic datasets.

e Excellent stability of the active-set solver and bootstrap implementation.

They also illustrate applications to consumer choice and risk preference data.



9 Mathematical Summary

Feasible cone: C = {Av:v >0,1'v = 1}.
Test statistic: J, = n (7 — A0)'Q(7 — AD).

Projection: 7 = arg min (7 — Av)Q(7 — Av).
v>0,1'v=1

AQAv —71) + A1 — p =0,

KKT system: <v,u>0, 1'v=1,

Vi =0.

Nr, = AIgMiN,>1,, /(T — Av)'Q(7t — Av),

. Ak sk ~ A
Bootstrap: F =7+ Ny, — T,

Jy =nming, sy g (75, — Av)Q(7F, — Av).

10 Key Takeaways

1. The RUM imposes linear restrictions: observed probabilities must lie in a convex cone gen-
erated by deterministic types.

2. Testing RUM reduces to computing the distance from 7 to this cone.

3. Cherchye-De Rock—Smeulders derive efficient optimization algorithms—active-set, LP relax-
ations, and matrix compression—that make this computation tractable.

4. Their framework provides a practical bridge between economic theory and statistical testing
of revealed-preference models.
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